hello sir i want to calculate mean square error for my all possible value for the system how to calculate it ?

1 visualización (últimos 30 días)
k0=1;
ss=[0,1,2,3];
kk=0;
poss=[];
for ii=1:d
poss=[poss,k0+(ii-1)*(N/d)];
end
for ii=1:length(poss)
k1=poss(ii);
for jj=ii+1:length(poss)
k2=poss(jj);
kk=kk+1;
k_p(kk,:)=[k1,k2];
A=[1, 1 ; exp(1i*2*pi)*(k1-1)*(ss(2)/N), exp(1i*2*pi)*(k2-1)*(ss(2)/N) ;exp(1i*2*pi)*(k1-1)*(ss(3)/N) , exp(1i*2*pi)*(k2-1)*(ss(3)/N); exp(1i*2*pi)*(k1-1)*(ss(4)/N), exp(1i*2*pi)*(k2-1)*(ss(4)/N)];
XF=pinv(A)*XD(:,1)
  1 comentario
Walter Roberson
Walter Roberson el 1 de Abr. de 2016
Your code is not complete. Some end statements are missing.
What is the mean squared error to be calculated relative to? MSE is used for comparison between two things, not by itself.
What are the parts that are allowed to vary for consideration of "all possible values"? I see that d is not defined so should we take it that f is one of the things that can change?

Iniciar sesión para comentar.

Respuesta aceptada

Image Analyst
Image Analyst el 1 de Abr. de 2016
There is a function immse() in the Image Processing Toolbox. But like Walter says, you need two signals.
  3 comentarios
Image Analyst
Image Analyst el 3 de Abr. de 2016
That would be zero. The MSE of X as compared to X (itself) is, of course, zero.
irfan
irfan el 4 de Abr. de 2016
sir i will send you my code so you help me to calculate the mean square error of all possible values

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre Signal Generation and Preprocessing en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by