How can I execute my Thomas Algorithm function?

10 visualizaciones (últimos 30 días)
says
says el 18 de Ag. de 2017
Editada: Torsten el 18 de Ag. de 2017
I have created a function to execute the thomas algorithm. I'm trying to use my function to solve a system with the following arrays:
b = -4ε + 2αh^2
a = 2ε - h(1+α(n+1)h)
c = 2ε + h(1+αnh)
g = 4kπh^2sin(kπnh)
where α=1.2, k=2, ε=0.02, R=4
I've inserted my function (below), but I'm not completely sure how to enter in these parameters in the command window as I'm pretty new to Matlab. Any help would be much appreciated.
function y = ThomasAlgorithm(a,b,c,f)
% obtain values
m = length(f);
f(1) = f(1)/b(1);
% Forward Substitution
for j = 1:m-1
c(j) = c(j)/b(j);
b(j+1) = b(j+1) - a(j)*c(j);
f(j+1) = (f(j+1) - a(j)*f(j))/b(j+1);
end;
% Backwards Substitution
for k = m-1:-1:1
f(k) = f(k) - c(k)*f(k+1);
end;
% Output
y = f;
end
I tried to put this into the command window but didn't have any luck. I'm not really sure where I'm going wrong at the moment.
>> m=10;
x0=0, xm=1;
y0=R, ym=0;
alpha=1.2;
k=2;
eps=0.02;
R=4;
h=xm-x0/m;
a=[2*eps-h*(1+alpha*((1:m-1)+1)*h)];
b=[-4*eps+2*alpha*h*h];
c=[2*eps+h*(1+(alpha*(1:m-1)*h))];
f=[4*k*pi*h*h*sin(k*pi*(1:m-1)*h)];
x=ThomasAlgorithm(a,b,c,f);
for ic=1:n
disp(x);
end
  10 comentarios
Image Analyst
Image Analyst el 18 de Ag. de 2017
Do it all from a script file instead of the command window.
Torsten
Torsten el 18 de Ag. de 2017
Editada: Torsten el 18 de Ag. de 2017
If you prescribe m=6 elements for f as you do above, everything is fine.
In your original code, you only defined f to be a vector of (m-1) (thus 5) elements, but in the "Backwards Substitution" loop, you tried to access f(m) (thus f(6)). This would have lead to an error.
Best wishes
Torsten.

Iniciar sesión para comentar.

Respuestas (0)

Categorías

Más información sobre Creating and Concatenating Matrices en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by