Problems solving cupled 2nd Order ODE with od45

5 visualizaciones (últimos 30 días)
Erik Kostic
Erik Kostic el 28 de Nov. de 2017
Comentada: Dariusz Skibicki el 16 de Mzo. de 2023
Hello.
I am given the task of simulating the two-dimensional motion of a magnetic pendulum in the x-y-plane. The problem comes down in solving this system of cupled 2nd order ordinary differential equation:
x'' + R*x' + sum_{i=1}^3 (m_i-x)/(sqrt((m1_i-x)^2 + (m2_i-y)^2 + d^2))^3 + G*x == 0
y'' + R*y' + sum_{i=1}^3 (m_i-y)/(sqrt((m1_i-x)^2 + (m2_i-y)^2 + d^2))^3 + G*y == 0
Those eqations discribe the motion in the plane. I know i can use the method "ode45" to solve such a problem, given some initial values.
I have tried it a few times, but didn't came to a solution.
I hope someone can help me. (x',y') = 0 no initial velocity and position (x,y) could be anywhere.
GREETINGS
  4 comentarios
Torsten
Torsten el 29 de Nov. de 2017
Why don't you just show what you have so far ?
Best wishes
Torsten.
Erik Kostic
Erik Kostic el 29 de Nov. de 2017
Editada: Torsten el 29 de Nov. de 2017
Hello Torsten
clear all, clc;
%%Constants
R = 0.2;
C = 0.3;
d = 0.5;
a = 1;
%%Position of magnets with input a,d > 0
mag1 = [ a/2, -sqrt(3)*a, -d];
mag2 = [-a/2, -sqrt(3)*a, -d];
mag3 = [ 0, sqrt(3)*a, -d];
%%Position of mass
pmp = [-10, -15, 0];
%%Velocity of mass
pmv = [ 0, 0, 0];
%%Acceleration of mass
pma = [ 0, 0, 0];
%%Matrix of trajectories
PMPos = zeros(3,1);
PMPos(:,1) = pmp;
%%ODE Solving
syms x(t) y(t)
ode1 = diff(x,t,2) + R*diff(x,t,1) - ( (mag1(1)-x)/(sqrt((mag1(1)-x)^2+(mag1(2)-y)^2+(mag1(3))^2)^3) + ...
(mag2(1)-x)/(sqrt((mag2(1)-x)^2+(mag2(2)-y)^2+(mag2(3))^2)^3) + ...
(mag3(1)-x)/(sqrt((mag3(1)-x)^2+(mag3(2)-y)^2+(mag3(3))^2)^3) ) +C*x == 0;
ode2 = diff(y,t,2) + R*diff(y,t,1) - ( (mag1(2)-y)/(sqrt((mag1(1)-x)^2+(mag1(2)-y)^2+(mag1(3))^2)^3) + ...
(mag2(2)-y)/(sqrt((mag2(1)-x)^2+(mag2(2)-y)^2+(mag2(3))^2)^3) + ...
(mag3(2)-y)/(sqrt((mag3(1)-x)^2+(mag3(2)-y)^2+(mag3(3))^2)^3) ) +C*y == 0;
odes = [ode1; ode2];
V = odeToVectorField(ode1);
M = matlabFunction(V,'vars', {'t','Y'});
Interval = [0 20];
Conditions = [0 0];
Solution = ode45(M,Interval,Conditions);

Iniciar sesión para comentar.

Respuestas (2)

Torsten
Torsten el 29 de Nov. de 2017
M=@(t,y)[y(2);-R*y(2)+((mag1(1)-y(1))/(sqrt((mag1(1)-y(1))^2+(mag1(2)-y(3))^2+(mag1(3))^2)^3)+(mag2(1)-y(1))/(sqrt((mag2(1)-y(1))^2+(mag2(2)-y(3))^2+(mag2(3))^2)^3)+(mag3(1)-y(1))/(sqrt((mag3(1)-y(1))^2+(mag3(2)-y(3))^2+(mag3(3))^2)^3) )-C*y(1);y(4);-R*y(4)+((mag1(2)-y(3))/(sqrt((mag1(1)-y(1))^2+(mag1(2)-y(3))^2+(mag1(3))^2)^3) +(mag2(2)-y(3))/(sqrt((mag2(1)-y(1))^2+(mag2(2)-y(3))^2+(mag2(3))^2)^3) +(mag3(2)-y(3))/(sqrt((mag3(1)-y(1))^2+(mag3(2)-y(3))^2+(mag3(3))^2)^3) ) -C*y(3)];
Interval=[0 20];
Conditions = [x; dx/dt; y ; dy/dt] at t=0 ??
Solution = ode45(M,Interval,Conditions);
Best wishes
Torsten.
  6 comentarios
Erik Kostic
Erik Kostic el 29 de Nov. de 2017
Hey Torsten, thank you very much you are a germ :D
Steven Lord
Steven Lord el 29 de Nov. de 2017
Consider specifying the 'OutputFcn' option in your ode45 call as part of the options structure created by the odeset function. There are a couple of output functions included with MATLAB (the description of the OutputFcn option on that documentation page lists them) and I suspect one of odeplot, odephas2, or odephas3 will be of use to you.

Iniciar sesión para comentar.


Dariusz Skibicki
Dariusz Skibicki el 16 de Mzo. de 2023
Replace
V = odeToVectorField(ode1);
with
V = odeToVectorField(odes);

Categorías

Más información sobre Numerical Integration and Differential Equations en Help Center y File Exchange.

Etiquetas

Productos

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by