how i can found the region of absolute stability ?
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
sadeem alqarni
el 7 de Jul. de 2018
Comentada: sadeem alqarni
el 8 de Jul. de 2018
n=0:30:180
h=((768 *cos((1/2)*n) + 96* cos(n) - 864) ./ (40*cos (1/2*n)+ 2*cos(n)+ 102))
figure
plot(n,h, 'b*-', 'LineWidth', 2)
grid on;
xlabel('n', 'FontSize', 20);
ylabel('h', 'FontSize', 20);
Respuesta aceptada
Image Analyst
el 7 de Jul. de 2018
Because you're using / (array division) instead of ./ (element by element division). Try this:
n=0:30:180
h=((768 *cos((1/2)*n) + 96* cos(n) - 864) ./ (40*cos (1/2*n)+ 2*cos(n)+ 102))
figure
plot(n,h, 'b*-', 'LineWidth', 2)
grid on;
xlabel('n', 'FontSize', 20);
ylabel('h', 'FontSize', 20);
% Do it again with more resolution.
n = linspace(min(n), max(n), 1000);
h=((768 *cos((1/2)*n) + 96* cos(n) - 864) ./ (40*cos (1/2*n)+ 2*cos(n)+ 102))
hold on;
plot(n,h, 'r-', 'LineWidth', 2)
grid on;
xlabel('n', 'FontSize', 20);
ylabel('h', 'FontSize', 20);

1 comentario
Más respuestas (2)
sadeem alqarni
el 8 de Jul. de 2018
2 comentarios
Image Analyst
el 8 de Jul. de 2018
How is this an "Answer" to your original question? Anyway, as you can see from my plot, it depends on how you define stable. The values are constantly changing so they're not stable, however the overall pattern seems pretty stable - it seems to oscillate pretty much the same way over the time period plotted.
Ver también
Categorías
Más información sobre 2-D and 3-D Plots en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
