CNN Training progress plots - Validation accuracy Jumps at last iteration
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Mariam Ahmed
el 30 de En. de 2019
Respondida: Kenta
el 16 de Jul. de 2020
Dear collegues,
I'm training a CNN on MATLAB and I noticed what you can see in the figure below. As shown in the training progress plots, the validation accruacy jumps at the very last iteration regardless of what's the number of Epoches used in the traning. It is confusing. What could be the reason for that?
Thank you.
#Epoches = 5
#Epoches = 10
Another trail with #Epoches = 10
2 comentarios
Respuesta aceptada
Kenta
el 16 de Jul. de 2020
If your network includes batch normalization layer, the final accuracy and the one during the training process sometimes differ. The reason why it happens is written in detail above. Hope it helps!
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Recognition, Object Detection, and Semantic Segmentation en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!