Bckground subraction using k means
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
vetri L
el 18 de Feb. de 2019
Comentada: vetri L
el 22 de Feb. de 2019
I have tried background subtraction algorithm using k means with matlab. Step 4 and 5 are difficult to understand. kinldly check and do the needful1: Idown ←Down-sample the image to 25% of its original size using
simple linear interpolation.
clc;
clear;
close all;
I = imread ('45.jpg');
Idown=imresize(I,[256,256]);
2: Get the S channel of Idown and consider it as an 1-d vector V of
pixel intensities.
I_hsv = rgb2hsv(Idown);
HSV_s = I_hsv(:,:,2);
HSV_s_1 = HSV_s(:);
3: Perform Dbin ←K-Means(V, k = 2).
Dbin = kmeans(HSV_s_1,2);
4: MapM ← Dbin back to image space. For that just do a linear scan
of Dbin.
please help this step ( how to do linear scan?)
5: Mup ←Up-sample the generated binary mapMback to the input
image size.
please help this step
6: Close small holes on Mup using the Closing morphological operator
with a disk structuring element of radius 7 pixels.
se = strel('disk', 7)
closeBW = imclose(Mup,se);
**********************************************************
Please check the above steps and do the needful
0 comentarios
Respuesta aceptada
Image Analyst
el 18 de Feb. de 2019
Since the color of the objects is nearly the same color as the background, I would probably not use color segmentation or kmeans. I'd probably use stdfilt() to identify "rough" things. The background will be smooth so you can then threshold it away.
3 comentarios
Image Analyst
el 22 de Feb. de 2019
Attached is a start. try playing with the parameters to see if you can optimize it.
Más respuestas (0)
Ver también
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!