Creating a tridiagonal matrix
818 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Aaron Atkinson
el 11 de Nov. de 2019
Comentada: John D'Errico
el 10 de Dic. de 2022
I am currently trying to create a 500*500 matrix in matlab with diagonals a=-1, b=4, c=2. My teacher has said that the best way to go about it is using loops, but is there a coded in function to use?
2 comentarios
Respuesta aceptada
Stephen23
el 11 de Nov. de 2019
Editada: Stephen23
el 20 de Mzo. de 2022
"My teacher has said that the best way to go about it is using loops"
Why on earth would they say that? Here are some non-loop aproaches:
1- See @giannit's comment: https://www.mathworks.com/matlabcentral/answers/490368-creating-a-tridiagonal-matrix#comment_1027546
>> N = 10;
>> a = -1;
>> b = 4;
>> c = 2;
>> M = diag(a*ones(1,N)) + diag(b*ones(1,N-1),1) + diag(c*ones(1,N-1),-1)
M =
-1 4 0 0 0 0 0 0 0 0
2 -1 4 0 0 0 0 0 0 0
0 2 -1 4 0 0 0 0 0 0
0 0 2 -1 4 0 0 0 0 0
0 0 0 2 -1 4 0 0 0 0
0 0 0 0 2 -1 4 0 0 0
0 0 0 0 0 2 -1 4 0 0
0 0 0 0 0 0 2 -1 4 0
0 0 0 0 0 0 0 2 -1 4
0 0 0 0 0 0 0 0 2 -1
3- indexing is reasonably simple:
>> M = zeros(N,N);
>> M( 1:1+N:N*N) = a;
>> M(N+1:1+N:N*N) = b;
>> M( 2:1+N:N*N-N) = c
M =
-1 4 0 0 0 0 0 0 0 0
2 -1 4 0 0 0 0 0 0 0
0 2 -1 4 0 0 0 0 0 0
0 0 2 -1 4 0 0 0 0 0
0 0 0 2 -1 4 0 0 0 0
0 0 0 0 2 -1 4 0 0 0
0 0 0 0 0 2 -1 4 0 0
0 0 0 0 0 0 2 -1 4 0
0 0 0 0 0 0 0 2 -1 4
0 0 0 0 0 0 0 0 2 -1
6 comentarios
Arth Patel
el 29 de Sept. de 2020
Can you please explain the second method a bit ? It's not clear to me how you're indexing a matrix using just one argument.
Stephen23
el 30 de Oct. de 2020
"It's not clear to me how you're indexing a matrix using just one argument."
The second example uses linear indexing:
Más respuestas (1)
Jihen
el 10 de Dic. de 2022
function[A]=remplissage(n)
R1=(-4)*ones(n-1,1);
R2=ones(n-2,1);
A=6*eye(n)+diag(R1,-1)+diag(R1,1)+diag(R2,2)+diag(R2,-2);
end
1 comentario
John D'Errico
el 10 de Dic. de 2022
This does not actually answer the question, creating instead a matrix with 5 diagonals, so a penta-diagonal matrix.
Ver también
Categorías
Más información sobre Operating on Diagonal Matrices en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!