Creating a tridiagonal matrix

818 visualizaciones (últimos 30 días)
Aaron Atkinson
Aaron Atkinson el 11 de Nov. de 2019
Comentada: John D'Errico el 10 de Dic. de 2022
I am currently trying to create a 500*500 matrix in matlab with diagonals a=-1, b=4, c=2. My teacher has said that the best way to go about it is using loops, but is there a coded in function to use?
  2 comentarios
David Goodmanson
David Goodmanson el 11 de Nov. de 2019
Hi Aaron
check out the 'diag' function
Alex Treat
Alex Treat el 30 de Oct. de 2020
coughs you were in the mec 103 class at CSU...

Iniciar sesión para comentar.

Respuesta aceptada

Stephen23
Stephen23 el 11 de Nov. de 2019
Editada: Stephen23 el 20 de Mzo. de 2022
"My teacher has said that the best way to go about it is using loops"
Why on earth would they say that? Here are some non-loop aproaches:
2- Use diag :
>> N = 10;
>> a = -1;
>> b = 4;
>> c = 2;
>> M = diag(a*ones(1,N)) + diag(b*ones(1,N-1),1) + diag(c*ones(1,N-1),-1)
M =
-1 4 0 0 0 0 0 0 0 0
2 -1 4 0 0 0 0 0 0 0
0 2 -1 4 0 0 0 0 0 0
0 0 2 -1 4 0 0 0 0 0
0 0 0 2 -1 4 0 0 0 0
0 0 0 0 2 -1 4 0 0 0
0 0 0 0 0 2 -1 4 0 0
0 0 0 0 0 0 2 -1 4 0
0 0 0 0 0 0 0 2 -1 4
0 0 0 0 0 0 0 0 2 -1
3- indexing is reasonably simple:
>> M = zeros(N,N);
>> M( 1:1+N:N*N) = a;
>> M(N+1:1+N:N*N) = b;
>> M( 2:1+N:N*N-N) = c
M =
-1 4 0 0 0 0 0 0 0 0
2 -1 4 0 0 0 0 0 0 0
0 2 -1 4 0 0 0 0 0 0
0 0 2 -1 4 0 0 0 0 0
0 0 0 2 -1 4 0 0 0 0
0 0 0 0 2 -1 4 0 0 0
0 0 0 0 0 2 -1 4 0 0
0 0 0 0 0 0 2 -1 4 0
0 0 0 0 0 0 0 2 -1 4
0 0 0 0 0 0 0 0 2 -1
  6 comentarios
Arth Patel
Arth Patel el 29 de Sept. de 2020
Can you please explain the second method a bit ? It's not clear to me how you're indexing a matrix using just one argument.
Stephen23
Stephen23 el 30 de Oct. de 2020
"It's not clear to me how you're indexing a matrix using just one argument."
The second example uses linear indexing:

Iniciar sesión para comentar.

Más respuestas (1)

Jihen
Jihen el 10 de Dic. de 2022
function[A]=remplissage(n)
R1=(-4)*ones(n-1,1);
R2=ones(n-2,1);
A=6*eye(n)+diag(R1,-1)+diag(R1,1)+diag(R2,2)+diag(R2,-2);
end
  1 comentario
John D'Errico
John D'Errico el 10 de Dic. de 2022
This does not actually answer the question, creating instead a matrix with 5 diagonals, so a penta-diagonal matrix.

Iniciar sesión para comentar.

Categorías

Más información sobre Operating on Diagonal Matrices en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by