How to use data after the dimensionality reduce for classification
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Kong
el 13 de Mzo. de 2020
Comentada: Image Analyst
el 14 de Mzo. de 2020
Hello.
I have a dataset that applied dimensionality reduce like PCA.
I attached the file. The dataset is consisted of 120 x 2353 (column 2353 is label, 0~6).
How can I use these dataset for classification?
0 comentarios
Respuesta aceptada
Image Analyst
el 13 de Mzo. de 2020
You can take a certain number of PCs and threshold them. For example, you have class 1 if PC1 < 0.5 and PC2 > 0.8 or whatever. It would help if you could visualize your PC's via a scatterplot or image or something so you can see what really matters. Or you could get Eigenvector's PLS Toolbox which has extensive and very sophisticated tools for figuring out your question.
2 comentarios
Image Analyst
el 14 de Mzo. de 2020
Yes, it's what you should do. This is similar to doing PCA on an RGB image where you have three 2-D color channels. See attached demos.
Más respuestas (0)
Ver también
Categorías
Más información sobre Dimensionality Reduction and Feature Extraction en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!