How to video classification using feature extraction
5 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Kong
el 27 de Mzo. de 2020
Comentada: Ramesh M
el 25 de Mzo. de 2021
Hello. I want to classify videos using several feature extraction.
I used HOG(histogram of oriented gradients), optical flow as feature extraction.
However, the accuracy of classification is not good. just 60% accuracy.
Could you give some ideas to improve accuracy?
This code is using HOG.
clear all
close all
%// read the video:
list = dir('*.avi')
% loop through the filenames in the list
for k = 1:length(list)
reader = VideoReader(list(k).name);
vid = {};
while hasFrame(reader)
vid{end+1} = readFrame(reader);
end
for i=1:25
fIdx(i) = i; %// do it for frame 1 ~ 60
frameGray{i} = rgb2gray(vid{fIdx(i)});
[featureVector{i},hogVisualization{i}] = extractHOGFeatures(frameGray{i});
end
end
X = cell2mat(featureVector');
2 comentarios
Kenta
el 28 de Mzo. de 2020
related to your question, a video classification with CNN and LSTM would be very effective.
Pls find the example code below.
Ramesh M
el 25 de Mzo. de 2021
But in this above document with CNN and LSTM have error on activation function.
Kindly giev me solution
Respuesta aceptada
Shishir Singhal
el 9 de Abr. de 2020
For video classification, you can use CNN for extracting spatial features. CNN is capable to extract deep features that HOG and other handcrafted feature extraction techniques might not be albe to. Use LSTM for capturing temporal features beacause you also need to have some sequential information between frames in a video.
You can read about CNN and LSTM in links here :
0 comentarios
Más respuestas (0)
Ver también
Categorías
Más información sobre Recognition, Object Detection, and Semantic Segmentation en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!