faster r-cnnの入力画像について

2 visualizaciones (últimos 30 días)
HY
HY el 17 de Sept. de 2020
Comentada: Kenta el 25 de Sept. de 2020
今回、faster r-cnnで4step学習を試みている状態なのですが、1つ理解ができていないことがあり質問させていただきます。
まず、inputSizeが[32 32 3]であるcnnネットワークを事前学習させました。このネットワークをfaster r-cnnとして学習するさいに、オプションであるSmallestImageDimensionとして学習イメージをサイズ変更できるとあるのですが、このオプションを使用すると、入力画像がその設定した値にサイズ変更されてネットワークに流れるのでしょうか?その場合、inputSizeが合わなくなってしまうので、一度inputSizeをSmallestImageDimensionの値と同じにする必要があるのでしょうか。
ミニバッチを適用する際に、faster r-cnnですと入力画像を同じサイズに変更する必要があり、transformを使用してinputSize[32 32]に合わせるべきなのか、それともSmallestImageDimensionの値に合わせるべきなのかわかりません。
ここの兼ね合いがよく理解できずにいます。何かアドバイス、ご指摘いただければ幸いです。
どうぞよろしくお願いいたします。

Respuesta aceptada

Kenta
Kenta el 17 de Sept. de 2020
こんにちは、ひとまず、両方試してみて、analyzeNetwork関数などで、ネットワーク構造をみてみてはいかがでしょうか?
  4 comentarios
HY
HY el 25 de Sept. de 2020
お返事ありがとうございます。学習データを集める際に携帯やアクションカメラなどサイズの違う学習データを集めています。別枠でも質問しましたが2017verでは勝手が違うようで困惑しています。色々とアドバイス大変ありがとうございます。提案されたことを一つ一つ試したいと思います。
Kenta
Kenta el 25 de Sept. de 2020
なるほど、そういう場合は大変ですね。詳しく教えていただいありがとうございました。

Iniciar sesión para comentar.

Más respuestas (0)

Categorías

Más información sobre 深層学習、セマンティック セグメンテーション、検出 en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!