Can I call my .m file code which is in regard with Deep Learning and applying LSTM?

2 views (last 30 days)
Pooyan Mobtahej
Pooyan Mobtahej on 26 Feb 2021
Answered: Pooyan Mobtahej on 1 Mar 2021
I want to use my code for LSTM and audio classification in Python. Can I use that directly without the need to write the code from scrarch in Python?
If there is anyway to call my .m file in Pyhton please let me know step by step.
Thanks

Answers (2)

Swetha Polemoni
Swetha Polemoni on 1 Mar 2021
Hi
You may find this answer helpful.

Pooyan Mobtahej
Pooyan Mobtahej on 1 Mar 2021
Hi
Here is the code that I need to imoplement in Python ?
How can I convert it Do you have any suggestion for data importing part as well as applying LSTM?
clear all
close all
TrainRatio=0.1;
ValidationRatio=0.1;
folder='/Users/pooyan/Desktop/cmms/class/normal/'; % change this path to your normal data folder
audio_files=dir(fullfile(folder,'*.ogg'));
nfileNum=length(audio_files);
nfileNum=1000
normal=[];
for i = 3600:4599
normal_name = [folder audio_files(i).name];
normal(i-3599,:) = audioread(normal_name);
end
normal=normal';
nLabels = repelem(categorical("normal"),nfileNum,1);
folder='/Users/pooyan/Desktop/cmms/class/anomaly/'; % change this path to your anomaly data folder
audio_files=dir(fullfile(folder,'*.ogg'));
afileNum=length(audio_files);
afileNum=100
anomaly=[];
for i = 1:afileNum
anomaly_name = [folder audio_files(i).name];
anomaly(i,:) = audioread(anomaly_name);
end
anomaly=anomaly';
aLabels = repelem(categorical("anomaly"),afileNum,1);
% randomize the inputs if necessary
% normal=normal(:,randperm(nfileNum, nfileNum));
% anomaly=anomaly(:,randperm(afileNum, afileNum));
nTrainNum = round(nfileNum*TrainRatio);
aTrainNum = round(afileNum*TrainRatio);
nValidationNum = round(nfileNum*ValidationRatio);
aValidationNum = round(afileNum*ValidationRatio);
audioTrain = [normal(:,1:nTrainNum),anomaly(:,1:aTrainNum)];
labelsTrain = [nLabels(1:nTrainNum);aLabels(1:aTrainNum)];
audioValidation = [normal(:,nTrainNum+1:nTrainNum+nValidationNum),anomaly(:,aTrainNum+1:aTrainNum+aValidationNum)];
labelsValidation = [nLabels(nTrainNum+1:nTrainNum+nValidationNum);aLabels(aTrainNum+1:aTrainNum+aValidationNum)];
audioTest = [normal(:,nTrainNum+nValidationNum+1:end),anomaly(:,aTrainNum+aValidationNum+1:end)];
labelsTest = [nLabels(nTrainNum+nValidationNum+1:end); aLabels(aTrainNum+aValidationNum+1:end)];
fs=44100;
% Create an audioFeatureExtractor object
%to extract the centroid and slope of the mel spectrum over time.
aFE = audioFeatureExtractor("SampleRate",fs, ... %Fs
"SpectralDescriptorInput","melSpectrum", ...
"spectralCentroid",true, ...
"spectralSlope",true);
featuresTrain = extract(aFE,audioTrain);
[numHopsPerSequence,numFeatures,numSignals] = size(featuresTrain);
numHopsPerSequence;
numFeatures;
numSignals;
%treat the extracted features as sequences and use a
%sequenceInputLayer as the first layer of your deep learning model.
featuresTrain = permute(featuresTrain,[2,1,3]); %permute switching dimensions in array
featuresTrain = squeeze(num2cell(featuresTrain,[1,2]));%remove dimensions
numSignals = numel(featuresTrain); %number of signals of normal and anomalies
[numFeatures,numHopsPerSequence] = size(featuresTrain{1});
%Extract the validation features.
featuresValidation = extract(aFE,audioValidation);
featuresValidation = permute(featuresValidation,[2,1,3]);
featuresValidation = squeeze(num2cell(featuresValidation,[1,2]));
%Define the network architecture.
layers = [ ...
sequenceInputLayer(numFeatures)
lstmLayer(50,"OutputMode","last")
fullyConnectedLayer(numel(unique(labelsTrain))) %%labelTrain=audio
softmaxLayer
classificationLayer];
%To define the training options
options = trainingOptions("adam", ...
"Shuffle","every-epoch", ...
"ValidationData",{featuresValidation,labelsValidation}, ... %%labelValidatin=audioValidation
"Plots","training-progress", ...
"Verbose",false);
%To train the network
net = trainNetwork(featuresTrain,labelsTrain,layers,options);
%Test the network %10 preccent
%classify(net,permute(extract(aFE,audioTest),[2 257 35]))
TestFeature=extract(aFE, audioTest);
for i=1:size(TestFeature, 3)
TestFeatureIn = TestFeature(:,:,i)';
classify(net,TestFeatureIn)
predict(i) = classify(net,TestFeatureIn);
end
plotconfusion(labelsTest,predict')

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by