I need to find standard deviation from labeled matrix
    2 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
    Wannakarn Ketmorn
 el 27 de Mzo. de 2021
  
My project need to find homogeneity from each cell from image so I decided to use SD for each cell
but I already try std(A) but it doesn't work I try meanintensity in regionprops but I don't know what to do next
do I have anyway to get SD from each labelmatrix
clear
clc
close all
IMG = imread('Cal-IR-MP-3.jpg');
blue = IMG(:,:,3);
th = graythresh(blue);
bw = imbinarize(blue,th);
bw = imclearborder(bw,8);
seD = strel('disk',3);
bw = imopen(bw,seD);
CC = bwconncomp(bw, 8);
L = labelmatrix(CC);
xx = [];
a = 1;
LL1 = L;
for i = 1:CC.NumObjects
    LL = L;
    if length(CC.PixelIdxList{i})<1000
        LL(LL==i) = 0;
        LL1(LL1==i) = 0;
    else
        LL(LL ~= i) = 0;
        LL(LL == i)= 1;
        xx(a,1) = i;
        stats = regionprops(LL,blue,'MeanIntensity');
        xx(a,2) = stats.MeanIntensity;
        s = std2(i);
        a = a+1;
    end
end
0 comentarios
Respuesta aceptada
  DGM
      
      
 el 27 de Mzo. de 2021
        
      Editada: DGM
      
      
 el 27 de Mzo. de 2021
  
      If what you're trying to do is get the standard deviation of the regions specified by the label matrix, try this.
clear variables; clc; close all
IMG = imread('sources/blacklight2.jpg'); % i used my own test image
blue = IMG(:,:,3);
th = graythresh(blue);
bw = imbinarize(blue,th);
bw = imclearborder(bw,8);
seD = strel('disk',3);
bw = imopen(bw,seD);
CC = bwconncomp(bw, 8);
L = labelmatrix(CC);
xx = [];
a = 1;
LL1 = L;
for i = 1:CC.NumObjects
    % only evaluate groups above a certain size
    if length(CC.PixelIdxList{i})<1000 
        % idk what you're doing with LL1
		% i'll assume this is for something else
		% LL was being rewritten and unused, so I removed it
        LL1(LL1==i) = 0;
	else
		roidata=double(blue(L==i)); % extract the ROI
        xx(a,:) = [i std(roidata(:))]; % write to output array
        a = a+1;
    end
end
xx
If LL1 isn't used for anything outside this scope, then it simplifies to 
clear variables; clc; close all
IMG = imread('sources/blacklight2.jpg');
blue = IMG(:,:,3);
th = graythresh(blue);
bw = imbinarize(blue,th);
bw = imclearborder(bw,8);
seD = strel('disk',3);
bw = imopen(bw,seD);
CC = bwconncomp(bw, 8);
L = labelmatrix(CC);
xx = [];
a = 1;
for i = 1:CC.NumObjects
    if length(CC.PixelIdxList{i})>=1000
        roidata=double(blue(L==i));
        xx(a,:) = [i std(roidata(:))];
        a = a+1;
	end  
end
xx
idk if that helps
2 comentarios
  Image Analyst
      
      
 el 27 de Mzo. de 2021
				You can use bwareafilt() or bwareaopen() in advance of the labeling to avoid having to check blobs less than 1000 pixels inside the loop.
  DGM
      
      
 el 27 de Mzo. de 2021
				
      Editada: DGM
      
      
 el 27 de Mzo. de 2021
  
			I was kind of assuming that maybe those small groups might be used for something else.  Otherwise, yeah.  That would clean things up a bit and potentially save some time as well.
IMG = imread('sources/blacklight2.jpg');
blue = IMG(:,:,3);
th = graythresh(blue);
bw = imbinarize(blue,th);
bw = imclearborder(bw,8);
seD = strel('disk',3);
bw = imopen(bw,seD); % idk that this is needed if using bwareaopen
bw = bwareaopen(bw,1000,8);
CC = bwconncomp(bw, 8);
L = labelmatrix(CC);
xx = zeros([CC.NumObjects 2]);
for i = 1:CC.NumObjects
	roidata=double(blue(L==i));
	xx(i,:) = [i std(roidata(:))];
end
Más respuestas (0)
Ver también
Categorías
				Más información sobre Image Segmentation and Analysis en Help Center y File Exchange.
			
	Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


