Generating a particular sequnce of numbers

2 visualizaciones (últimos 30 días)
Adi gahlawat
Adi gahlawat el 27 de Jul. de 2013
Hi,
given a variable natural number d, I'm trying to generate a sequence of the form:
[1 2 1 3 2 1 4 3 2 1.......d d-1 d-2......3 2 1].
I don't want to use for loop for this process, does anyone know a better (faster) method. I tried the colon operator without any success.
Thank you.
Adi

Respuesta aceptada

Azzi Abdelmalek
Azzi Abdelmalek el 27 de Jul. de 2013
Editada: Azzi Abdelmalek el 27 de Jul. de 2013
d=4
cell2mat(arrayfun(@(x) x:-1:1,1:d,'un',0))
  7 comentarios
Youssef  Khmou
Youssef Khmou el 27 de Jul. de 2013
ok thank you for the explanation .
Jan
Jan el 28 de Jul. de 2013
Azzi's for loop approach is faster.

Iniciar sesión para comentar.

Más respuestas (6)

Roger Stafford
Roger Stafford el 27 de Jul. de 2013
Here's another method to try:
N = d*(d+1)/2;
A = zeros(1,N);
n = 1:d;
A((n.^2-n+2)/2) = n;
A = cumsum(A)-(1:N)+1;
  1 comentario
Adi gahlawat
Adi gahlawat el 27 de Jul. de 2013
Editada: Adi gahlawat el 27 de Jul. de 2013
Hi Roger,
your method is excellent. It's about 2 times faster than my for loop based code. Much obliged.
Adi

Iniciar sesión para comentar.


Azzi Abdelmalek
Azzi Abdelmalek el 28 de Jul. de 2013
Editada: Azzi Abdelmalek el 28 de Jul. de 2013
Edit
This is twice faster then Stafford's answer
A4=zeros(1,d*(d+1)/2); % Pre-allocate
c=0;
for k=1:d
A4(c+1:c+k)=k:-1:1;
c=c+k;
end
  1 comentario
Jan
Jan el 28 de Jul. de 2013
Editada: Jan el 28 de Jul. de 2013
Yes, this is exactly the kind of simplicity, which runs fast. While the one-liners with anonymous functions processed by cellfun or arrayfun look sophisticated, such basic loops hit the point. +1
I'd replace sum(1:d) by: d*(d+1)/2 . Anbd you can omit idx.

Iniciar sesión para comentar.


Richard Brown
Richard Brown el 29 de Jul. de 2013
Even faster:
k = 1;
n = d*(d+1)/2;
out = zeros(n, 1);
for i = 1:d
for j = i:-1:1
out(k) = j;
k = k + 1;
end
end
  7 comentarios
Jan
Jan el 29 de Jul. de 2013
Editada: Jan el 29 de Jul. de 2013
Under R2011b I get for d=1000 and 500 repetitions:
Elapsed time is 3.466296 seconds. Azzi's loop
Elapsed time is 3.765340 seconds. Richard's double loop
Elapsed time is 1.897343 seconds. C-Mex (see my answer)
Richard Brown
Richard Brown el 29 de Jul. de 2013
Editada: Richard Brown el 29 de Jul. de 2013
I checked again, and I agree with Azzi. My method was running faster because of another case I had in between his and mine. The JIT was doing some kind of unanticipated optimisation between cases.
I get similar orders of magnitude results to Azzi for R2012a if I remove that case, and if I run in R2013a (Linux), his method is twice as fast.
Shame, I like it when JIT brings performance of completely naive loops up to vectorised speed :)

Iniciar sesión para comentar.


Jan
Jan el 29 de Jul. de 2013
An finally the C-Mex:
#include "mex.h"
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray*prhs[]) {
mwSize d, i, j;
double *r;
d = (mwSize) mxGetScalar(prhs[0]);
plhs[0] = mxCreateDoubleMatrix(1, d * (d + 1) / 2, mxREAL);
r = mxGetPr(plhs[0]);
for (i = 1; i <= d; i++) {
for (j = i; j != 0; *r++ = j--) ;
}
}
And if your number d can be limited to 65535, the times shrink from 1.9 to 0.34 seconds:
#include "mex.h"
void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray*prhs[]) {
uint16_T d, i, j, *r;
d = (uint16_T) mxGetScalar(prhs[0]);
plhs[0] = mxCreateNumericMatrix(1, d * (d + 1) / 2, mxUINT16_CLASS, mxREAL);
r = (uint16_T *) mxGetData(plhs[0]);
for (i = 1; i <= d; i++) {
for (j = i; j != 0; *r++ = j--) ;
}
}
For UINT32 0.89 seconds are required.
  1 comentario
Richard Brown
Richard Brown el 29 de Jul. de 2013
Nice. I imagine d would be limited to less than 65535, that's a pretty huge vector otherwise

Iniciar sesión para comentar.


Richard Brown
Richard Brown el 29 de Jul. de 2013
Editada: Richard Brown el 29 de Jul. de 2013
Also comparable, but not (quite) faster
n = 1:(d*(d+1)/2);
a = ceil(0.5*(-1 + sqrt(1 + 8*n)));
out = a.*(a + 1)/2 - n + 1;
  3 comentarios
Jan
Jan el 29 de Jul. de 2013
@Richard: How did you find this formula?
Richard Brown
Richard Brown el 29 de Jul. de 2013
If you look at the sequence, and add 0, 1, 2, 3, 4 ... you get
n: 1 2 3 4 5 6 7 8 9 10
1 3 3 6 6 6 10 10 10 10
Note that these are the triangular numbers, and that the triangular numbers 1, 3, 6, 10 appear in their corresponding positions, The a-th triangular number is given by
n = a (a + 1) / 2
So if you solve this quadratic for a where n is a triangular number, you get the index of the triangular number. If you do this for a value of n in between two triangular numbers, you can round this up, and invert the formula to get the nearest triangular number above (which is what the sequence is). Finally, you just subtract the sequence 0, 1, 2, ... to recover the original one.

Iniciar sesión para comentar.


Andrei Bobrov
Andrei Bobrov el 27 de Jul. de 2013
Editada: Andrei Bobrov el 30 de Jul. de 2013
out = nonzeros(triu(toeplitz(1:d)));
or
out = bsxfun(@minus,1:d,(0:d-1)');
out = out(out>0);
or
z = 1:d;
z2 = cumsum(z);
z1 = z2 - z + 1;
for jj = d:-1:1
out(z1(jj):z2(jj)) = jj:-1:1;
end
or
out = ones(d*(d+1)/2,1);
ii = cumsum(d:-1:1) - (d:-1:1) + 1;
out(ii(2:end)) = 1-d : -1;
out = flipud(cumsum(out));

Categorías

Más información sobre Performance and Memory en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by