Subsets of uncorrelated features

2 visualizaciones (últimos 30 días)
Kais
Kais el 10 de Jul. de 2021
Comentada: Kais el 15 de Jul. de 2021
Given a N by N correlation matrix of N features, how to find ALL subsets of pariwise uncorrelated features if we assume two features are uncorrelated if their correlation score is less than a threshold Alpha. There is no restriction on the number of features making the subsets. All features making a subset need to be pairwise uncorrelated.

Respuesta aceptada

Jeff Miller
Jeff Miller el 12 de Jul. de 2021
Editada: Jeff Miller el 12 de Jul. de 2021
N = 5;
R = rand(N); % We will ignore the lower triangular part of this array
rCutoff = 0.4;
% Make a cell array that holds all possible combinations of 2, 3, 4, ... features
combos = cell(0,0);
for i=2:N
iCombos = nchoosek(1:N,i);
for j=1:size(iCombos,1)
combos{end+1} = iCombos(j,:);
end
end
ncells = numel(combos);
% Check each cell to make sure that all of the pairwise correlations are
% less than the cutoff
qualifies = true(1,ncells);
for icell=1:ncells
features = combos{icell};
nfeatures = numel(features);
for ifeature=1:nfeatures-1
for jfeature=ifeature+1:nfeatures
iifeature = features(ifeature);
jjfeature = features(jfeature);
if abs(R(iifeature,jjfeature)) > rCutoff
qualifies(icell) = false;
end
end
end
end
  5 comentarios
Jeff Miller
Jeff Miller el 13 de Jul. de 2021
You may well be right, that but "if sum" line is cognitively impenetrable to me. :)
Thanks for accepting my answer.
Kais
Kais el 14 de Jul. de 2021
I am looking for a pairwise uncorrleation between ALL features iofn the "feature" variable". The line:
sum(nonzeros(triu(abs(R(features,features)),1)) > rCutoff)
will result into a matrix of logical values showing which feature pairs are correlated and which are not (triu is only there to reduce the symmetric correlation matrix). If any of the values of the matrix is true (equivalently, sum of values of the matrix is different from zero), The subset unqualifies as an uncorrelated subset.

Iniciar sesión para comentar.

Más respuestas (2)

Ive J
Ive J el 11 de Jul. de 2021
Editada: Ive J el 12 de Jul. de 2021
Let R be the pairwise correlation matrix:
N = 10;
R = rand(N);
R(logical(eye(N))) = 1;
for i = 1:size(R, 1) - 1
for j = i+1:size(R, 1)
R(j, i) = R(i, j);
end
end
disp(R)
cutoff = 0.4; % independent features
idx = R < cutoff;
idx = triu(idx); % R(i, j) == R(j, i) in pairwise correlation matrix
features = "feature" + (1:N); % feature names
% there may be a simpler way to do this
indepFeatures = [];
for i = 1:N
indepFeatures = [indepFeatures, arrayfun(@(x)[x, features(i)], features(idx(i, :)), 'uni', false)];
end
indepFeatures = vertcat(indepFeatures{:});
% find all cliques of this set
nodes = zeros(size(indepFeatures, 1), 1);
[~, nodes(:, 1)] = ismember(indepFeatures(:, 1), features);
[~, nodes(:, 2)] = ismember(indepFeatures(:, 2), features);
G = graph(nodes(:, 1), nodes(:, 2));
M = maximalCliques(adjacency(G));
indepSets = cell(size(M, 2), 1);
for i = 1:numel(indepSets)
indepSets{i} = features(M(:, i) ~= 0);
end
indepSets(cellfun(@numel, indepSets) < 2) = []; % this can be further unified with indepFeatures
You can find maximalCliques in FEX.
  12 comentarios
Kais
Kais el 14 de Jul. de 2021
Editada: Kais el 15 de Jul. de 2021
@Ive J I tried your code with cutoff = .7. I get 32 pairs, 2 triples, 2 quadruples, and 5 quintuples. While the number of pairs and quintuples seem to be correct, the numbers of triples and quadruples are not. For example, the triple [6, 7, 9] is missing.
There should be a total of 112 uncorrelated features. You code finds 44 only. Any clue why is that?
Kais
Kais el 15 de Jul. de 2021
Never mind the last question. I figured the algorithm finds max cliques so it won't count subgraphs within larger subgraphs ([6, 7,9] won't show up because it's part of the larger subset [4, 6,7,9]), which significantly reduces the number of subsets.

Iniciar sesión para comentar.


Image Analyst
Image Analyst el 11 de Jul. de 2021
Would stepwise regression be of any help?
Otherwise, just make an N by N table of correlation coefficients by corelating every feature with every other feature.

Categorías

Más información sobre Descriptive Statistics en Help Center y File Exchange.

Productos


Versión

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by