Discrepancy between eigenvalues and eigenvectors derived from analytical solution and matlab code.
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
mohammad mortezaie
el 23 de Jul. de 2021
Comentada: mohammad mortezaie
el 26 de Jul. de 2021
Hello,
I have this matrix [ep+V/2 t*phi; t*conj(phi) eb-V/2].
The analytical solution for eigenvalues of this matrix is E=(eb+ep)/2+v*sqrt((eb-ep+V)/2+t^2*|phi|^2).
But matlab solution is different from this.
Can someone help me for solve this chalenge?
2 comentarios
Respuesta aceptada
Chunru
el 23 de Jul. de 2021
Editada: Chunru
el 23 de Jul. de 2021
First, the sign in the last element of H should be '-' rather than '+' as in your question. Second, "doc eig" command for the order of output variables. Third, make sure your analytical result is correct. Try manual simplification then. You may want to verify the symbolic expressions with some numerical values to see if they agree.
syms eb ep t V phi
H=[ep+V/2 t*phi; t*conj(phi) eb-V/2]
[v,d]=eig(H) % not [E, v]
Más respuestas (1)
Steven Lord
el 23 de Jul. de 2021
syms eb ep t V phi
H=[ep+V/2 t*phi; t*conj(phi) eb+V/2]
[E,v]=eig(H)
Let's check if the elements in E and v satisfy the definition of the eigenvectors and eigenvalues for H.
simplify(H*E-E*v)
The elements in E and v satisfy the definition of the eigenvectors and eigenvalues for H, so they are eigenvectors and eigenvalues of H. What did you say you expected the eigenvalues to be?
Ver también
Categorías
Más información sobre Linear Algebra en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!