Community Profile

# coqui

Con actividad desde 2014

Ver insignias

#### Content Feed

Ver por

Pregunta

By using Narnet to predict the future Price, we need determining the optimal lags to detemine the optimal hiddenlayesizes?
To determine the hiddenlayesizes: 1/we apply a trial and error method by using lags=1 (default value), or 2/we must verify...

casi 6 años hace | 1 respuesta | 0

### 1

respuesta

Pregunta

Can us trained Functional link neural network (FLANN) based on Levenberg-Marquardt Method?
Can us trained Functional link neural network (FLANN) based on Levenberg-Marquardt Method?

alrededor de 7 años hace | 0 respuestas | 0

### 0

respuestas

Pregunta

Data normalization in neural network
I have used this formula to normalize the data between -1 and 1: Y = -1 + 2.*(data - min(data))./(max(data) - min(data)); ho...

alrededor de 7 años hace | 1 respuesta | 0

### 1

respuesta

Pregunta

Neural network (fitnet) and data decomposition?
Can you help me to rectify these code, I used fitnet to predict future index. I need to decompose the data only to training and ...

alrededor de 7 años hace | 2 respuestas | 0

### 2

respuestas

Pregunta

How we can define the number of expansion of first input by using trigonometric functional link artificial neural network?
In trigonometric functional link artificial neural network, each input sample is expanded to N sine terms, N cosine terms plus t...

alrededor de 7 años hace | 1 respuesta | 0

### 1

respuesta

Pregunta

to prove the robustness of neural network model what is the best model which can compare to it ? (especially in order to forecast)
to prove the robustness of neural network model what is the best model which can compare to it ? can you propose a model? ...

más de 7 años hace | 1 respuesta | 0

### 1

respuesta

Pregunta

input transformation in backpropagation neural network (prediction task)
I have used historical prices to predict future price based on backpropagation neural network (fitnet). I have obtained a mse ea...

más de 7 años hace | 1 respuesta | 0

### 1

respuesta

Pregunta

By including a moving window of fixed length in the input vector of MLP, is the Back-propagation ANN equivalent to NAR model?
If this is the case, how we can add the moving window? Supposing that the lag is equal to 3, for example: N= lenght(data); ...

más de 7 años hace | 1 respuesta | 0

### 1

respuesta

Pregunta

how can use static feedforward neural network to predict futre observation
As newff the appropriate choice or we must use others functions like feedforwardnet???

casi 8 años hace | 3 respuestas | 0

### 3

respuestas

Pregunta

how can divide the sample into two part (training and test) in Narnet
By using Matlab code the divide function which I have employed is divideblock therefore I necessarily divided the sample into ...

casi 8 años hace | 2 respuestas | 0

### 2

respuestas

Pregunta

trial and error approach to find optimal hidden neurones number
I have decomposed the data into three parts: 70% (training), 10% (validation) and 20% (testing). When I used trial and error app...

casi 8 años hace | 1 respuesta | 1

### 1

respuesta

Pregunta

optimal hidden nodes number
Dear friend, I want to determine the optimal number of hidden nodes using narnet in order to predict the next'day index, i ha...

alrededor de 8 años hace | 1 respuesta | 0

### 1

respuesta

Respondida
How can predict multi step ahead using Narnet
Thank you Greg, I find these expressions to compute Hub: 1) Hub = -1 + ceil( (Ntrneq-O) / (MXFD*O + O +1) ) 2) Hub = ...

más de 8 años hace | 0

Pregunta

how can find the optimal delays and number of hidden nodes in narnet for forecasting task?
I have tried with these code but I haven't found solutions: 1/ Optimal timelags? N = length(Target) zy = zscore(Target,...

más de 8 años hace | 1 respuesta | 0

### 1

respuesta

Pregunta

How can predict multi step ahead using Narnet
I want to predict the future prices, I have used only the daily historical prices as input. I can predict only one step ahead us...

más de 8 años hace | 3 respuestas | 0

respuestas