An Introductory Course in Computational Neuroscience

An Introductory Course in Computational Neuroscience

An Introductory Course in Computational Neuroscience teaches students to understand, simulate, and analyze the complex behaviors of individual neurons and brain circuits. It is built around computer tutorials that guide students in producing models of neural behavior, with the associated MATLAB code freely available online. From these models students learn how individual neurons function and how, when connected, neurons cooperate in a circuit. The book demonstrates through simulated models how oscillations, multistability, post-stimulus rebounds, and chaos can arise within either single neurons or circuits, and it explores their roles in the brain.

The book first presents essential background in neuroscience, physics, mathematics, and MATLAB, with explanations illustrated by many example problems. Subsequent chapters cover the neuron and spike production; single-spike trains and the underlying cognitive processes; conductance-based models; the simulation of synaptic connections; firing-rate models of large-scale circuit operation; dynamical systems and their components; synaptic plasticity; and techniques for analysis of neuron population datasets, including principal components analysis, hidden Markov modeling, and Bayesian decoding.

Accessible to undergraduates in life sciences with limited background in mathematics and computer coding, the book can be used in a “flipped” or “inverted” teaching approach, with class time devoted to hands-on work on the computer tutorials. It can also be a resource for graduate students in the life sciences who wish to gain computing skills and a deeper knowledge of neural function and neural circuits.

About This Book

Paul Miller, Brandeis University

The MIT Press, 2018

ISBN: 9780262038256
Language: English

Buy Now at Amazon.com

MATLAB Courseware

Teaching materials based on MATLAB and Simulink.

Trials Available

Try the latest neuroscience products.

Get trial software