ConstantLine Properties
Constant line appearance and behavior
A constant line is a line that is graphed at a specified x-
or y-value in Cartesian axes. The xline
and
yline
functions create constant vertical and horizontal lines,
respectively. You can modify the appearance and behavior of the constant line by changing
ConstantLine
property values.
xl = xline(4); xl.LineWidth = 2;
Location
Value
— Location of constant line
scalar
Location of the constant line on the x- or
y-axis, specified as a scalar. You can specify the value as a
numeric, categorical, datetime
, or duration value.
Example
Create a constant line at x = 5.5. Then change the value to
7
.
xl = xline(5.5); xl.Value = 7;
InterceptAxis
— Intercept axis
'x'
| 'y'
Intercept axis, specified as 'x'
or 'y'
for a
vertical line or horizontal line, respectively. A constant line with an
x-intercept is a vertical line, whereas a constant line with a
y-intercept is a horizontal line.
Layer
— Layer position
"bottom"
(default) | "top"
Since R2024a
Layer position, specified as "bottom"
or
"top"
. A value of
"bottom"
displays the
ConstantLine
object under other
items in the axes, such as lines or markers. A value of
"top"
displays the
ConstantLine
object on top of
other items.
Passing a ConstantLine
object to the
uistack
function has no effect
on its stacking order, nor does reordering the
Children
property of the
axes.
Labels
Label
— Line label
''
(default) | character vector | cell array of character vectors | string array | numeric array
Line label, specified as a character vector, cell array of character vectors, string array, or numeric array. To create a multiline label, use a string array or a cell array of character vectors.
Example: "cutoff frequency"
Example: ["One row of text","A second row of text"]
Example: {'One row of text','A second row of text'}
To include special characters, such as superscripts, subscripts, Greek letters, or
mathematical symbols, use TeX markup. For a list of supported markup, see the Interpreter
property.
LabelHorizontalAlignment
— Horizontal alignment of label
'right'
(default) | 'left'
| 'center'
Horizontal alignment of the label with respect to the line, specified as one of the options in the table.
Option | Description | |
---|---|---|
'right' | Right side of the line. | |
'left' | Left side of the line. | |
'center' | Center of the line. For vertical lines, the label segments the line. |
LabelVerticalAlignment
— Vertical alignment of label
'top'
(default) | 'middle'
| 'bottom'
Vertical alignment of the label with respect to the line, specified as one of the options in the table.
Option | Description | |
---|---|---|
'top' | Top of the line. | |
'middle' | Middle of the line. For horizontal lines, the label segments the line. | |
'bottom' | Bottom of the line. |
LabelOrientation
— Label orientation
'aligned'
(default) | 'horizontal'
Label orientation, specified as 'aligned'
or
'horizontal'
. Examples are shown in the table.
Orientation | Description | |
---|---|---|
'aligned' | Label has the same orientation as the line. | |
'horizontal' | Label is horizontal, regardless of the line orientation. |
Interpreter
— Text interpreter
'tex'
(default) | 'latex'
| 'none'
Text interpreter, specified as one of these values:
'tex'
— Interpret characters using a subset of TeX markup.'latex'
— Interpret characters using LaTeX markup.'none'
— Display literal characters.
TeX Markup
By default, MATLAB® supports a subset of TeX markup. Use TeX markup to add superscripts and subscripts, modify the font type and color, and include special characters in the text.
Modifiers remain in effect until the end of the text.
Superscripts and subscripts are an exception because they modify only the next character or the
characters within the curly braces. When you set the interpreter to 'tex'
,
the supported modifiers are as follows.
Modifier | Description | Example |
---|---|---|
^{ } | Superscript | 'text^{superscript}' |
_{ } | Subscript | 'text_{subscript}' |
\bf | Bold font | '\bf text' |
\it | Italic font | '\it text' |
\sl | Oblique font (usually the same as italic font) | '\sl text' |
\rm | Normal font | '\rm text' |
\fontname{ | Font name — Replace
with the name of
a font family. You can use this in combination with other modifiers. | '\fontname{Courier} text' |
\fontsize{ | Font size —Replace
with a numeric
scalar value in point units. | '\fontsize{15} text' |
\color{ | Font color — Replace
with one of
these colors: red , green ,
yellow , magenta ,
blue , black ,
white , gray ,
darkGreen , orange , or
lightBlue . | '\color{magenta} text' |
\color[rgb]{specifier} | Custom font color — Replace
with a
three-element RGB triplet. | '\color[rgb]{0,0.5,0.5} text' |
This table lists the supported special characters for the
'tex'
interpreter.
Character Sequence | Symbol | Character Sequence | Symbol | Character Sequence | Symbol |
---|---|---|---|---|---|
| α |
| υ |
| ~ |
| ∠ |
| ϕ |
| ≤ |
|
|
| χ |
| ∞ |
| β |
| ψ |
| ♣ |
| γ |
| ω |
| ♦ |
| δ |
| Γ |
| ♥ |
| ϵ |
| Δ |
| ♠ |
| ζ |
| Θ |
| ↔ |
| η |
| Λ |
| ← |
| θ |
| Ξ |
| ⇐ |
| ϑ |
| Π |
| ↑ |
| ι |
| Σ |
| → |
| κ |
| ϒ |
| ⇒ |
| λ |
| Φ |
| ↓ |
| µ |
| Ψ |
| º |
| ν |
| Ω |
| ± |
| ξ |
| ∀ |
| ≥ |
| π |
| ∃ |
| ∝ |
| ρ |
| ∍ |
| ∂ |
| σ |
| ≅ |
| • |
| ς |
| ≈ |
| ÷ |
| τ |
| ℜ |
| ≠ |
| ≡ |
| ⊕ |
| ℵ |
| ℑ |
| ∪ |
| ℘ |
| ⊗ |
| ⊆ |
| ∅ |
| ∩ |
| ∈ |
| ⊇ |
| ⊃ |
| ⌈ |
| ⊂ |
| ∫ |
| · |
| ο |
| ⌋ |
| ¬ |
| ∇ |
| ⌊ |
| x |
| ... |
| ⊥ |
| √ |
| ´ |
| ∧ |
| ϖ |
| ∅ |
| ⌉ |
| 〉 |
| | |
| ∨ |
| 〈 |
| © |
LaTeX Markup
To use LaTeX markup, set the interpreter to 'latex'
. For inline
mode, surround the markup with single dollar signs ($
). For
display mode, surround the markup with double dollar signs
($$
).
LaTeX Mode | Example | Result |
---|---|---|
Inline |
'$\int_1^{20} x^2 dx$' |
|
Display |
'$$\int_1^{20} x^2 dx$$' |
|
The displayed text uses the default LaTeX font style. The
FontName
, FontWeight
, and
FontAngle
properties do not have an effect. To change the
font style, use LaTeX markup.
The maximum size of the text that you can use with the LaTeX interpreter is 1200 characters. For multiline text, this reduces by about 10 characters per line.
For examples that use TeX and LaTeX, see Greek Letters and Special Characters in Chart Text. For more information about the LaTeX system, see The LaTeX Project website at https://www.latex-project.org/.
LabelColor
— Label color
RGB triplet | hexadecimal color code | 'r'
| 'g'
| 'b'
| ...
Since R2024b
Label color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short name.
For a custom color, specify an RGB triplet or a hexadecimal color code.
An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range
[0,1]
, for example,[0.4 0.6 0.7]
.A hexadecimal color code is a string scalar or character vector that starts with a hash symbol (
#
) followed by three or six hexadecimal digits, which can range from0
toF
. The values are not case sensitive. Therefore, the color codes"#FF8800"
,"#ff8800"
,"#F80"
, and"#f80"
are equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
"red" | "r" | [1 0 0] | "#FF0000" | |
"green" | "g" | [0 1 0] | "#00FF00" | |
"blue" | "b" | [0 0 1] | "#0000FF" | |
"cyan"
| "c" | [0 1 1] | "#00FFFF" | |
"magenta" | "m" | [1 0 1] | "#FF00FF" | |
"yellow" | "y" | [1 1 0] | "#FFFF00" | |
"black" | "k" | [0 0 0] | "#000000" | |
"white" | "w" | [1 1 1] | "#FFFFFF" | |
"none" | Not applicable | Not applicable | Not applicable | No color |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | "#0072BD" | |
[0.8500 0.3250 0.0980] | "#D95319" | |
[0.9290 0.6940 0.1250] | "#EDB120" | |
[0.4940 0.1840 0.5560] | "#7E2F8E" | |
[0.4660 0.6740 0.1880] | "#77AC30" | |
[0.3010 0.7450 0.9330] | "#4DBEEE" | |
[0.6350 0.0780 0.1840] | "#A2142F" |
LabelColorMode
— Control how LabelColor
is set
"auto"
(default) | "manual"
Since R2024b
Control how the LabelColor
property is set, specified as one of
these values:
"auto"
— MATLAB sets theLabelColor
property to the same value as theColor
property, so the line and the label have the same color."manual"
— You set the value of theLabelColor
property directly, and the color does not change.
If you change the value of the LabelColor
property manually,
MATLAB changes the value of the LabelColorMode
property to
"manual"
.
Color and Styling
Color
— Line color
[0.15 0.15 0.15]
(default) | RGB triplet | hexadecimal color code | 'r'
| 'g'
| 'b'
| ...
Line color, specified as an RGB triplet, a hexadecimal color code, a color name, or a short name.
For a custom color, specify an RGB triplet or a hexadecimal color code.
An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range
[0,1]
, for example,[0.4 0.6 0.7]
.A hexadecimal color code is a string scalar or character vector that starts with a hash symbol (
#
) followed by three or six hexadecimal digits, which can range from0
toF
. The values are not case sensitive. Therefore, the color codes"#FF8800"
,"#ff8800"
,"#F80"
, and"#f80"
are equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
"red" | "r" | [1 0 0] | "#FF0000" | |
"green" | "g" | [0 1 0] | "#00FF00" | |
"blue" | "b" | [0 0 1] | "#0000FF" | |
"cyan"
| "c" | [0 1 1] | "#00FFFF" | |
"magenta" | "m" | [1 0 1] | "#FF00FF" | |
"yellow" | "y" | [1 1 0] | "#FFFF00" | |
"black" | "k" | [0 0 0] | "#000000" | |
"white" | "w" | [1 1 1] | "#FFFFFF" | |
"none" | Not applicable | Not applicable | Not applicable | No color |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | "#0072BD" | |
[0.8500 0.3250 0.0980] | "#D95319" | |
[0.9290 0.6940 0.1250] | "#EDB120" | |
[0.4940 0.1840 0.5560] | "#7E2F8E" | |
[0.4660 0.6740 0.1880] | "#77AC30" | |
[0.3010 0.7450 0.9330] | "#4DBEEE" | |
[0.6350 0.0780 0.1840] | "#A2142F" |
Example: 'g'
Example: [0.6 0.2 0.5]
Example: '#D2F9A7'
ColorMode
— Control how Color
is set
"auto"
(default) | "manual"
Control how the Color
property is set, specified as one of these values:
"auto"
— MATLAB controls the value of theColor
property by using theSeriesIndex
property of theConstantLine
object and theColorOrder
property of the axes."manual"
— You set the value of theColor
property directly, or indirectly as a function argument when you create theConstantLine
object.
If you change the value of the Color
property manually,
MATLAB changes the value of the ColorMode
property to
"manual"
.
LineStyle
— Line style
"-"
(default) | "--"
| ":"
| "-."
| "none"
Line style, specified as one of the options listed in this table.
Line Style | Description | Resulting Line |
---|---|---|
"-" | Solid line |
|
"--" | Dashed line |
|
":" | Dotted line |
|
"-." | Dash-dotted line |
|
"none" | No line | No line |
LineStyleMode
— Control how LineStyle
is set
"auto"
(default) | "manual"
Control how the LineStyle
property is set, specified as one of
these values:
"auto"
— MATLAB controls the value of theLineStyle
property by using theSeriesIndex
property of theConstantLine
object and theLineStyleOrder
property of the axes."manual"
— You set the value of theLineStyle
property directly, or indirectly as a function argument when you create theConstantLine
object.
If you change the value of the LineStyle
property manually,
MATLAB changes the value of the LineStyleMode
property to
"manual"
.
LineWidth
— Line width
0.5
(default) | positive value
Line width, specified as a positive value in points.
Alpha
— Line transparency
0.7
(default) | scalar in range [0,1]
Line transparency, specified as a scalar in the range [0,1]
. A
value of 1
is opaque and 0
is completely
transparent. Values between 0
and 1
are
semitransparent.
SeriesIndex
— Series index
"none"
(default) | positive whole number
Series index, specified as a positive whole number or "none"
.
This property is useful for reassigning the colors and line styles of
ConstantLine
objects so that they match other objects.
When the SeriesIndex
property is a number, MATLAB uses the number to calculate indices for assigning colors and line styles
when you call the xline
or yline
functions.
The indices refer to the rows of the arrays stored in the
ColorOrder
and LineStyleOrder
properties of
the axes. Any objects in the axes that have the same SeriesIndex
number will have the same color (and line style, if applicable).
A SeriesIndex
value of "none"
corresponds to a
solid line with a neutral color that does not participate in the indexing scheme.
How Manually Setting Colors, Line Styles, or Markers Overrides SeriesIndex
Behavior
To manually control the color and line style, set the Color
and LineStyle
properties of the ConstantLine
object.
When you manually set these properties of an object, MATLAB disables automatic color and line style selection for that object and
allows your selection to persist, regardless of the value of the
SeriesIndex
property. The ColorMode
and
LineStyleMode
properties indicate whether the colors and line
styles have been set manually (by you) or automatically. For each of these mode
properties, a value of "manual"
indicates manual selection, and
"auto"
indicates automatic selection.
To enable automatic selection again, set the ColorMode
,
LineStyleMode
, or both properties to "auto"
,
and set the SeriesIndex
property to a positive whole
number.
In some cases, MATLAB sets the SeriesIndex
property to
0
, which also disables automatic color selection.
Font
FontName
— Font name
supported font name | "FixedWidth"
Font name, specified as a supported font name or "FixedWidth"
. To display
and print text properly, you must choose a font that your system supports. The default
font depends on your operating system and locale.
To use a fixed-width font that looks good in any locale, use "FixedWidth"
.
The fixed-width font relies on the root FixedWidthFontName
property. Setting the root FixedWidthFontName
property causes an
immediate update of the display to use the new font.
FontSize
— Font Size
positive number
Font size, specified as a positive number. The unit of measurement is points. The default font size depends on your operating system and locale.
FontWeight
— Character thickness
'normal'
(default) | 'bold'
Character thickness, specified as 'normal'
or
'bold'
.
MATLAB uses the FontWeight
property to select a font from
those available on your system. Not all fonts have a bold weight. Therefore, specifying
a bold font weight can still result in the normal font weight.
FontAngle
— Character slant
'normal'
(default) | 'italic'
Character slant, specified as 'normal'
or
'italic'
.
Not all fonts have both font styles. Therefore, the italic font might look the same as the normal font.
Legend
DisplayName
— Legend label
''
(default) | character vector | string scalar
Legend label, specified as a character vector or string scalar. The legend does not
display until you call the legend
command. If you do not specify
the text, then legend
sets the label using the form
'dataN'
.
Annotation
— Include object in legend
Annotation
object
Include the object in the legend, specified as an Annotation
object. Set the underlying IconDisplayStyle
property of the
Annotation
object to one of these values:
"on"
— Include the object in the legend (default)."off"
— Do not include the object in the legend.
For example, to exclude the ConstantLine
object named
obj
from the legend, set the IconDisplayStyle
property to "off"
.
obj.Annotation.LegendInformation.IconDisplayStyle = "off";
Alternatively, you can control the items in a legend using the legend
function. Specify the first input argument as a vector of the
graphics objects to include. If you do not specify an existing graphics object in the
first input argument, then it does not appear in the legend. However, graphics objects
added to the axes after the legend is created do appear in the legend. Consider creating
the legend after creating all the plots to avoid extra items.
Interactivity
Visible
— State of visibility
"on"
(default) | on/off logical value
State of visibility, specified as "on"
or "off"
, or as
numeric or logical 1
(true
) or
0
(false
). A value of "on"
is equivalent to true
, and "off"
is equivalent to
false
. Thus, you can use the value of this property as a logical
value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
"on"
— Display the object."off"
— Hide the object without deleting it. You still can access the properties of an invisible object.
ContextMenu
— Context menu
empty GraphicsPlaceholder
array (default) | ContextMenu
object
Context menu, specified as a ContextMenu
object. Use this property
to display a context menu when you right-click the object. Create the context menu using
the uicontextmenu
function.
Note
If the PickableParts
property is set to
'none'
or if the HitTest
property is set
to 'off'
, then the context menu does not appear.
Selected
— Selection state
'off'
(default) | on/off logical value
Selection state, specified as 'on'
or 'off'
, or as
numeric or logical 1
(true
) or
0
(false
). A value of 'on'
is equivalent to true, and 'off'
is equivalent to
false
. Thus, you can use the value of this property as a logical
value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
'on'
— Selected. If you click the object when in plot edit mode, then MATLAB sets itsSelected
property to'on'
. If theSelectionHighlight
property also is set to'on'
, then MATLAB displays selection handles around the object.'off'
— Not selected.
SelectionHighlight
— Display of selection handles
'on'
(default) | on/off logical value
Display of selection handles when selected, specified as 'on'
or
'off'
, or as numeric or logical 1
(true
) or 0
(false
). A
value of 'on'
is equivalent to true, and 'off'
is
equivalent to false
. Thus, you can use the value of this property as
a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
'on'
— Display selection handles when theSelected
property is set to'on'
.'off'
— Never display selection handles, even when theSelected
property is set to'on'
.
Callbacks
ButtonDownFcn
— Mouse-click callback
''
(default) | function handle | cell array | character vector
Mouse-click callback, specified as one of these values:
Function handle
Cell array containing a function handle and additional arguments
Character vector that is a valid MATLAB command or function, which is evaluated in the base workspace (not recommended)
Use this property to execute code when you click the object. If you specify this property using a function handle, then MATLAB passes two arguments to the callback function when executing the callback:
Clicked object — Access properties of the clicked object from within the callback function.
Event data — Empty argument. Replace it with the tilde character (
~
) in the function definition to indicate that this argument is not used.
For more information on how to use function handles to define callback functions, see Create Callbacks for Graphics Objects.
Note
If the PickableParts
property is set to 'none'
or
if the HitTest
property is set to 'off'
,
then this callback does not execute.
CreateFcn
— Creation function
''
(default) | function handle | cell array | character vector
Object creation function, specified as one of these values:
Function handle.
Cell array in which the first element is a function handle. Subsequent elements in the cell array are the arguments to pass to the callback function.
Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates this expression in the base workspace.
For more information about specifying a callback as a function handle, cell array, or character vector, see Create Callbacks for Graphics Objects.
This property specifies a callback function to execute when MATLAB creates the object. MATLAB initializes all property values before executing the CreateFcn
callback. If you do not specify the CreateFcn
property, then MATLAB executes a default creation function.
Setting the CreateFcn
property on an existing component has no effect.
If you specify this property as a function handle or cell array, you can access the object that is being created using the first argument of the callback function. Otherwise, use the gcbo
function to access the object.
DeleteFcn
— Deletion function
''
(default) | function handle | cell array | character vector
Object deletion function, specified as one of these values:
Function handle.
Cell array in which the first element is a function handle. Subsequent elements in the cell array are the arguments to pass to the callback function.
Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates this expression in the base workspace.
For more information about specifying a callback as a function handle, cell array, or character vector, see Create Callbacks for Graphics Objects.
This property specifies a callback function to execute when MATLAB deletes the object. MATLAB executes the DeleteFcn
callback before destroying the
properties of the object. If you do not specify the DeleteFcn
property, then MATLAB executes a default deletion function.
If you specify this property as a function handle or cell array, you can access the object that is being deleted using the first argument of the callback function. Otherwise, use the gcbo
function to access the object.
Callback Execution Control
Interruptible
— Callback interruption
'on'
(default) | on/off logical value
Callback interruption, specified as 'on'
or 'off'
, or as
numeric or logical 1
(true
) or
0
(false
). A value of 'on'
is equivalent to true
, and 'off'
is equivalent to
false
. Thus, you can use the value of this property as a logical
value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
This property determines if a running callback can be interrupted. There are two callback states to consider:
The running callback is the currently executing callback.
The interrupting callback is a callback that tries to interrupt the running callback.
MATLAB determines callback interruption behavior whenever it executes a command that
processes the callback queue. These commands include drawnow
, figure
, uifigure
, getframe
, waitfor
, and pause
.
If the running callback does not contain one of these commands, then no interruption occurs. MATLAB first finishes executing the running callback, and later executes the interrupting callback.
If the running callback does contain one of these commands, then the
Interruptible
property of the object that owns the running
callback determines if the interruption occurs:
If the value of
Interruptible
is'off'
, then no interruption occurs. Instead, theBusyAction
property of the object that owns the interrupting callback determines if the interrupting callback is discarded or added to the callback queue.If the value of
Interruptible
is'on'
, then the interruption occurs. The next time MATLAB processes the callback queue, it stops the execution of the running callback and executes the interrupting callback. After the interrupting callback completes, MATLAB then resumes executing the running callback.
Note
Callback interruption and execution behave differently in these situations:
If the interrupting callback is a
DeleteFcn
,CloseRequestFcn
, orSizeChangedFcn
callback, then the interruption occurs regardless of theInterruptible
property value.If the running callback is currently executing the
waitfor
function, then the interruption occurs regardless of theInterruptible
property value.If the interrupting callback is owned by a
Timer
object, then the callback executes according to schedule regardless of theInterruptible
property value.
BusyAction
— Callback queuing
'queue'
(default) | 'cancel'
Callback queuing, specified as 'queue'
or 'cancel'
. The BusyAction
property determines how MATLAB handles the execution of interrupting callbacks. There are two callback states to consider:
The running callback is the currently executing callback.
The interrupting callback is a callback that tries to interrupt the running callback.
The BusyAction
property determines callback queuing behavior only
when both of these conditions are met:
Under these conditions, the BusyAction
property of the
object that owns the interrupting callback determines how MATLAB handles the interrupting callback. These are possible values of the
BusyAction
property:
'queue'
— Puts the interrupting callback in a queue to be processed after the running callback finishes execution.'cancel'
— Does not execute the interrupting callback.
PickableParts
— Ability to capture mouse clicks
'visible'
(default) | 'all'
| 'none'
Ability to capture mouse clicks, specified as one of these values:
'visible'
— Capture mouse clicks when visible. TheVisible
property must be set to'on'
and you must click a part of theConstantLine
object that has a defined color. You cannot click a part that has an associated color property set to'none'
. TheHitTest
property determines if theConstantLine
object responds to the click or if an ancestor does.'all'
— Capture mouse clicks regardless of visibility. TheVisible
property can be set to'on'
or'off'
and you can click a part of theConstantLine
object that has no color. TheHitTest
property determines if theConstantLine
object responds to the click or if an ancestor does.'none'
— Cannot capture mouse clicks. Clicking theConstantLine
object passes the click through it to the object below it in the current view of the figure window. TheHitTest
property has no effect.
HitTest
— Response to captured mouse clicks
'on'
(default) | on/off logical value
Response to captured mouse clicks, specified as 'on'
or
'off'
, or as numeric or logical 1
(true
) or 0
(false
). A
value of 'on'
is equivalent to true, and 'off'
is
equivalent to false
. Thus, you can use the value of this property as
a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
'on'
— Trigger theButtonDownFcn
callback of theConstantLine
object. If you have defined theContextMenu
property, then invoke the context menu.'off'
— Trigger the callbacks for the nearest ancestor of theConstantLine
object that meets one of these conditions:HitTest
property is set to'on'
.PickableParts
property is set to a value that enables the ancestor to capture mouse clicks.
Note
The PickableParts
property determines if
the ConstantLine
object can capture
mouse clicks. If it cannot, then the HitTest
property
has no effect.
BeingDeleted
— Deletion status
on/off logical value
This property is read-only.
Deletion status, returned as an on/off logical value of type matlab.lang.OnOffSwitchState
.
MATLAB sets the BeingDeleted
property to
'on'
when the DeleteFcn
callback begins
execution. The BeingDeleted
property remains set to
'on'
until the component object no longer exists.
Check the value of the BeingDeleted
property to verify that the object is not about to be deleted before querying or modifying it.
Parent/Child
Parent
— Parent
Axes
object (default)
Parent, specified as an Axes
object.
Children
— Children
empty GraphicsPlaceholder
array
The object has no children. You cannot set this property.
HandleVisibility
— Visibility of object handle
"on"
(default) | "off"
| "callback"
Visibility of the object handle in the Children
property
of the parent, specified as one of these values:
"on"
— Object handle is always visible."off"
— Object handle is invisible at all times. This option is useful for preventing unintended changes by another function. SetHandleVisibility
to"off"
to temporarily hide the handle during the execution of that function."callback"
— Object handle is visible from within callbacks or functions invoked by callbacks, but not from within functions invoked from the command line. This option blocks access to the object at the command line, but permits callback functions to access it.
If the object is not listed in the Children
property of the parent, then
functions that obtain object handles by searching the object hierarchy or querying
handle properties cannot return it. Examples of such functions include the
get
, findobj
, gca
, gcf
, gco
, newplot
, cla
, clf
, and close
functions.
Hidden object handles are still valid. Set the root ShowHiddenHandles
property to "on"
to list all object handles regardless of their
HandleVisibility
property setting.
Identifiers
Type
— Type of graphics object
'constantline'
This property is read-only.
Type of graphics object, returned as 'constantline'
. Use this
property to find all objects of a given type within a plotting hierarchy, for example,
searching for the type using findobj
.
Tag
— Object identifier
''
(default) | character vector | string scalar
Object identifier, specified as a character vector or string scalar. You can specify a unique Tag
value to serve as an identifier for an object. When you need access to the object elsewhere in your code, you can use the findobj
function to search for the object based on the Tag
value.
UserData
— User data
[]
(default) | array
User data, specified as any MATLAB array. For example, you can specify a scalar, vector, matrix, cell array, character array, table, or structure. Use this property to store arbitrary data on an object.
If you are working in App Designer, create public or private properties in the app to share data instead of using the UserData
property. For more information, see Share Data Within App Designer Apps.
Version History
Introduced in R2018bR2024b: Control text label color
Control the color of the text label for a line by setting the LabelColor
property.
R2024a: Layer reference lines in plots
Move ConstantLine
objects above or below other elements in a plot by
setting the Layer
property to "top"
or
"bottom"
.
R2023b: Enable Automatic Color and Line Style Selection with the SeriesIndex
property
Set the SeriesIndex
property of a ConstantLine
object to control how the objects vary in color and line style. Changing the value of this
property is useful when you want to match the colors and line styles of different objects in
the axes.
R2020a: UIContextMenu
property is not recommended
Setting or getting UIContextMenu
property is not recommended. Instead,
use the ContextMenu
property, which accepts the same type of input and behaves the same way as the
UIContextMenu
property.
There are no plans to remove the UIContextMenu
property, but it is no
longer listed when you call the set
, get
, or
properties
functions on the ConstantLine
object.
Comando de MATLAB
Ha hecho clic en un enlace que corresponde a este comando de MATLAB:
Ejecute el comando introduciéndolo en la ventana de comandos de MATLAB. Los navegadores web no admiten comandos de MATLAB.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)