GridLayout Properties
Control grid layout manager behavior
Grid layout managers position UI components along the rows and columns of an invisible grid that spans the entire figure or a container within the figure. By changing property values of a grid layout, you can modify certain aspects of its behavior. Use dot notation to refer to a specific object and property:
fig = uifigure; g = uigridlayout(fig); g.ColumnWidth = {100,'1x'};
Grid
ColumnWidth
— Column width
{'1x','1x'}
(default) | cell array | string array | numeric array
Column width, specified as a cell array containing either 'fit'
,
numbers, or numbers paired with 'x'
characters. You can specify any
combination of values. The number of elements in the cell array controls the number of columns
in the grid. For example, to create a 4-column grid, specify a 1-by-4 cell array. Column width
can be specified as a string array or numeric array, only if the elements specified are of the
same type, like ["1x" "2x" "1x"]
or [100 200 50]
.
There are three different types of column widths:
Fit width — Specify
'fit'
. Column width automatically adjusts to fit its contents. For text-based components,'fit'
width adjusts with font properties to show the whole text. For non text-based components,'fit'
width is based on the default size of the component and other factors. Use'fit'
width if you want to avoid hard-coding the column width to fit components, or if your app is translated to another language or runs on different platforms.Fixed width in pixels — Specify a number. The column width is fixed at the number of pixels you specify. When the parent container resizes, the column width does not change.
Variable width — Specify a number paired with an
'x'
character (for example,'1x'
). When the parent container resizes, the column width grows or shrinks. Variable-width columns fill the remaining horizontal space that the fixed-width columns do not use. The number you pair with the'x'
character is a weight for dividing up the remaining space among all the variable-width columns. If the grid has only one variable-width column, then it uses all the remaining space regardless of the number. If there are multiple variable-width columns that use the same number, then they share the space equally. Otherwise, the amount of space is proportional to the number.
For example, {'fit',200,'2x','1x'}
specifies that the width of the
first column is sized to fit its content, the second column is fixed at 200 pixels, and the
last two columns share the remaining horizontal space. The third column uses twice as much
space as the fourth column.
Changing certain aspects of a layout can affect the value of this property. For example, adding more components to a fully populated grid changes the size of the grid to accommodate the new components.
Changing the ColumnWidth
property on a grid layout that already
contains components does not change the layout of the components. For example, if you try to
dynamically delete a column that contains components, the ColumnWidth
property does not change until you move those components out of that column.
RowHeight
— Row height
{'1x','1x'}
(default) | cell array | string array | numeric array
Row height, specified as a cell array containing either 'fit'
, numbers,
or numbers paired with 'x'
characters. You can specify any combination of
values. The number of elements in the cell array controls the number of rows in the grid. For
example, to create a grid that has 4 rows, specify a 1-by-4 cell array. Row height can be
specified as a string array or numeric array, only if the elements specified are of the same
type, like ["1x" "2x" "1x"]
or [100 200 50]
.
There are three different types of row heights:
Fit height — Specify
'fit'
. Row height automatically adjusts to fit its contents. For text-based components,'fit'
height adjusts with font properties to show the whole text. For non text-based components,'fit'
height is based on the default size of the component and other factors. Use'fit'
height if you want to avoid hard-coding the row height to fit components, or if your app is translated to another language or runs on different platforms.Fixed height in pixels — Specify a number. The row height is fixed at the number of pixels you specify. When the parent container resizes, the row height does not change.
Variable height — Specify a number paired with an
'x'
character (for example,'1x'
). When the parent container resizes, the row grows or shrinks. Variable-height rows fill the remaining vertical space that the fixed-height rows do not use. The number you pair with the'x'
character is a weight for dividing up the remaining space among all the variable-height rows. If the grid has only one variable-height row, then it uses all the remaining space regardless of the number. If there are multiple variable-height rows that use the same number, then they share the space equally. Otherwise, the amount of space is proportional to the number.
For example, {'fit',200,'2x','1x'}
specifies that the height of the
first row is sized to fit its content, the second row is fixed at 200 pixels, and the last two
rows share the remaining vertical space. The third row uses twice as much space as the fourth
row.
Changing certain aspects of a layout can affect the value of this property. For example, adding more components to a fully populated grid changes the size of the grid to accommodate the new components.
Changing the RowHeight
property on a grid layout that already
contains components does not change the layout of the components. For example, if you try to
dynamically delete a row that contains components, the RowHeight
property
does not change until you move those components out of that row.
ColumnSpacing
— Column spacing
10
(default) | number
Column spacing, specified as a scalar number of pixels between adjacent columns in the grid. The number you specify applies to all columns.
RowSpacing
— Row spacing
10
(default) | number
Row spacing, specified as a scalar number of pixels between adjacent rows in the grid. The number you specify applies to all rows.
Padding
— Padding
[10 10 10 10]
(default) | [left bottom right top]
Padding around the outer perimeter of the grid, specified as a vector of the form
[left bottom right top]
. The elements of the vector are described
in the table below.
Vector Element | Description |
---|---|
left | Distance in pixels between the inner left edge of the parent container and the left edge of the grid. |
bottom | Distance in pixels between the inner bottom edge of the parent container and the bottom edge of the grid. |
right | Distance in pixels between the inner right edge of the parent container and the right edge of the grid. |
top | Distance in pixels between the inner top edge of the parent container and the top edge of the grid. The inner top edge of the parent container starts below all decorations such as titles, tab labels, or menu bars. |
Color
BackgroundColor
— Background color
[0.94 0.94 0.94]
(default) | RGB triplet | hexadecimal color code | 'r'
| 'g'
| 'b'
| ...
Background color, specified as an RGB triplet, a hexadecimal color code, or one of the color options listed in the table.
RGB triplets and hexadecimal color codes are useful for specifying custom colors.
An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range
[0,1]
; for example,[0.4 0.6 0.7]
.A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (
#
) followed by three or six hexadecimal digits, which can range from0
toF
. The values are not case sensitive. Thus, the color codes'#FF8800'
,'#ff8800'
,'#F80'
, and'#f80'
are equivalent.
Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.
Color Name | Short Name | RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|---|---|
'red' | 'r' | [1 0 0] | '#FF0000' | |
'green' | 'g' | [0 1 0] | '#00FF00' | |
'blue' | 'b' | [0 0 1] | '#0000FF' | |
'cyan' | 'c' | [0 1 1] | '#00FFFF' | |
'magenta' | 'm' | [1 0 1] | '#FF00FF' | |
'yellow' | 'y' | [1 1 0] | '#FFFF00' | |
'black' | 'k' | [0 0 0] | '#000000' | |
'white' | 'w' | [1 1 1] | '#FFFFFF' |
Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB® uses in many types of plots.
RGB Triplet | Hexadecimal Color Code | Appearance |
---|---|---|
[0 0.4470 0.7410] | '#0072BD' | |
[0.8500 0.3250 0.0980] | '#D95319' | |
[0.9290 0.6940 0.1250] | '#EDB120' | |
[0.4940 0.1840 0.5560] | '#7E2F8E' | |
[0.4660 0.6740 0.1880] | '#77AC30' | |
[0.3010 0.7450 0.9330] | '#4DBEEE' | |
[0.6350 0.0780 0.1840] | '#A2142F' |
Interactivity
Visible
— Visibility of children
'on'
(default) | on/off logical value
Visibility of children, specified as 'on'
or
'off'
. , or as numeric or logical 1
(true
) or 0
(false
). A value
of 'on'
is equivalent to true
, and
'off'
is equivalent to false
. Thus, you can use
the value of this property as a logical value. The value is stored as an on/off logical
value of type matlab.lang.OnOffSwitchState
.
Set this property to 'off'
to hide all child components in the
grid and their descendants. The children and their descendants are hidden regardless of
the value of their Visible
properties. When components are hidden,
you can get and set their properties even though they do not appear in the app.
When you set this property to 'on'
, the children and their
descendants are visible only if their Visible
properties are also
set to 'on'
.
Setting the Visible
property on the grid does not change the
values of the Visible
properties of its descendants.
Scrollable
— Ability to scroll
'off'
(default) | on/off logical value
Ability to scroll, specified as 'off'
or 'on'
,
or as numeric or logical 1
(true
) or
0
(false
). A value of 'on'
is
equivalent to true
, and 'off'
is equivalent to
false
. Thus, you can use the value of this property as a logical
value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
Setting this property to 'on'
enables scrolling within the grid
layout manager. In order to scroll, these conditions must also be met:
The sum of the values specified for the
'RowHeight'
property of the grid layout manager must be larger than the height of the parent container.The sum of the values specified for the
'ColumnWidth'
property of the grid layout manager must be larger than the width of the parent container.At least one row or column of the grid layout manager must be set to a fixed pixel height or width.
The grid layout manager must contain components.
Certain types of charts and axes do not support scrollable containers. However, you can place the chart or axes in a nonscrollable panel, and then place the panel in the scrollable container. For more information, see Display Graphics in App Designer.
ContextMenu
— Context menu
empty GraphicsPlaceholder
array (default) | ContextMenu
object
Context menu, specified as a ContextMenu
object. Use this
property to display a context menu when you right-click on the grid layout manager.
Create the context menu using the uicontextmenu
function.
Position
Layout
— Layout options
empty LayoutOptions
array (default) | GridLayoutOptions
object
Layout options, specified as a
GridLayoutOptions
object. This property specifies options for a
nested grid layout container. If the grid layout is not a child of another grid layout
container (for example, it is a child of a figure or panel), then this property is empty
and has no effect. However, if the grid layout is a child of another grid layout, you
can place that child grid in the desired row and column of the parent grid by setting
the Row
and Column
properties on the
GridLayoutOptions
object.
For example, this code nests grid2
in the third row and second
column of
grid1
.
grid1 = uigridlayout([4 3]); grid2 = uigridlayout(grid1); grid2.Layout.Row = 3; grid2.Layout.Column = 2;
Row
or Column
property as a two-element
vector. For example, this command spans grid2
over columns
2
through 3
of
grid1
:grid2.Layout.Column = [2 3];
Callbacks
CreateFcn
— Creation function
''
(default) | function handle | cell array | character vector
Object creation function, specified as one of these values:
Function handle.
Cell array in which the first element is a function handle. Subsequent elements in the cell array are the arguments to pass to the callback function.
Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates this expression in the base workspace.
For more information about specifying a callback as a function handle, cell array, or character vector, see Callbacks in App Designer.
This property specifies a callback function to execute when MATLAB creates the object. MATLAB initializes all property values before executing the CreateFcn
callback. If you do not specify the CreateFcn
property, then MATLAB executes a default creation function.
Setting the CreateFcn
property on an existing component has no effect.
If you specify this property as a function handle or cell array, you can access the object that is being created using the first argument of the callback function. Otherwise, use the gcbo
function to access the object.
DeleteFcn
— Deletion function
''
(default) | function handle | cell array | character vector
Object deletion function, specified as one of these values:
Function handle.
Cell array in which the first element is a function handle. Subsequent elements in the cell array are the arguments to pass to the callback function.
Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates this expression in the base workspace.
For more information about specifying a callback as a function handle, cell array, or character vector, see Callbacks in App Designer.
This property specifies a callback function to execute when MATLAB deletes the object. MATLAB executes the DeleteFcn
callback before destroying the
properties of the object. If you do not specify the DeleteFcn
property, then MATLAB executes a default deletion function.
If you specify this property as a function handle or cell array, you can access the
object that is being deleted using the first argument of the callback function.
Otherwise, use the gcbo
function to access the
object.
Callback Execution Control
Interruptible
— Callback interruption
'on'
(default) | on/off logical value
Callback interruption, specified as 'on'
or 'off'
, or as
numeric or logical 1
(true
) or
0
(false
). A value of 'on'
is equivalent to true
, and 'off'
is equivalent to
false
. Thus, you can use the value of this property as a logical
value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState
.
This property determines if a running callback can be interrupted. There are two callback states to consider:
The running callback is the currently executing callback.
The interrupting callback is a callback that tries to interrupt the running callback.
MATLAB determines callback interruption behavior whenever it executes a command that
processes the callback queue. These commands include drawnow
, figure
, uifigure
, getframe
, waitfor
, and pause
.
If the running callback does not contain one of these commands, then no interruption occurs. MATLAB first finishes executing the running callback, and later executes the interrupting callback.
If the running callback does contain one of these commands, then the
Interruptible
property of the object that owns the running
callback determines if the interruption occurs:
If the value of
Interruptible
is'off'
, then no interruption occurs. Instead, theBusyAction
property of the object that owns the interrupting callback determines if the interrupting callback is discarded or added to the callback queue.If the value of
Interruptible
is'on'
, then the interruption occurs. The next time MATLAB processes the callback queue, it stops the execution of the running callback and executes the interrupting callback. After the interrupting callback completes, MATLAB then resumes executing the running callback.
Note
Callback interruption and execution behave differently in these situations:
If the interrupting callback is a
DeleteFcn
,CloseRequestFcn
, orSizeChangedFcn
callback, then the interruption occurs regardless of theInterruptible
property value.If the running callback is currently executing the
waitfor
function, then the interruption occurs regardless of theInterruptible
property value.If the interrupting callback is owned by a
Timer
object, then the callback executes according to schedule regardless of theInterruptible
property value.
BusyAction
— Callback queuing
'queue'
(default) | 'cancel'
Callback queuing, specified as 'queue'
or 'cancel'
. The BusyAction
property determines how MATLAB handles the execution of interrupting callbacks. There are two callback states to consider:
The running callback is the currently executing callback.
The interrupting callback is a callback that tries to interrupt the running callback.
The BusyAction
property determines callback queuing behavior only
when both of these conditions are met:
Under these conditions, the BusyAction
property of the
object that owns the interrupting callback determines how MATLAB handles the interrupting callback. These are possible values of the
BusyAction
property:
'queue'
— Puts the interrupting callback in a queue to be processed after the running callback finishes execution.'cancel'
— Does not execute the interrupting callback.
BeingDeleted
— Deletion status
on/off logical value
This property is read-only.
Deletion status, returned as an on/off logical value of type matlab.lang.OnOffSwitchState
.
MATLAB sets the BeingDeleted
property to
'on'
when the DeleteFcn
callback begins
execution. The BeingDeleted
property remains set to
'on'
until the component object no longer exists.
Check the value of the BeingDeleted
property to verify that the object is not about to be deleted before querying or modifying it.
Parent/Child
Parent
— Parent container
Figure
object (default) | Panel
object | Tab
object | ButtonGroup
object | GridLayout
object
Parent container, specified as a Figure
object
created using the uifigure
function, or one of its child
containers: Tab
, Panel
, ButtonGroup
, or GridLayout
. If no container is specified, MATLAB calls the uifigure
function to create a new Figure
object that serves as the parent container.
Children
— Children
empty GraphicsPlaceholderArray
| array of UI component objects
Children, returned as an array of UI component objects. Use this property to view
the list of children or to reorder the children by setting the property to a permutation
of itself. You cannot add or remove children using this property. To add a child to this
list, set the Parent
property of the child UI component.
Reordering the children has no effect on the location of the components in the grid.
To change the location of a component in a grid, set its Layout
property.
HandleVisibility
— Visibility of object handle
'on'
(default) | 'callback'
| 'off'
Visibility of the object handle, specified as 'on'
, 'callback'
,
or 'off'
.
This property controls the visibility of the object in its parent's
list of children. When an object is not visible in its parent's list
of children, it is not returned by functions that obtain objects by
searching the object hierarchy or querying properties. These functions
include get
, findobj
, clf
,
and close
. Objects are valid
even if they are not visible. If you can access an object, you can
set and get its properties, and pass it to any function that operates
on objects.
HandleVisibility Value | Description |
---|---|
'on' | The object is always visible. |
'callback' | The object is visible from within callbacks or functions invoked by callbacks, but not from within functions invoked from the command line. This option blocks access to the object at the command-line, but allows callback functions to access it. |
'off' | The object is invisible at all times. This option is useful
for preventing unintended changes to the UI by another function. Set
the HandleVisibility to 'off' to
temporarily hide the object during the execution of that function.
|
Identifiers
Type
— Type of graphics object
'uigridlayout'
This property is read-only.
Type of graphics object, returned as 'uigridlayout'
.
Tag
— Object identifier
''
(default) | character vector | string scalar
Object identifier, specified as a character vector or string scalar. You can specify a unique Tag
value to serve as an identifier for an object. When you need access to the object elsewhere in your code, you can use the findobj
function to search for the object based on the Tag
value.
UserData
— User data
[]
(default) | array
User data, specified as any MATLAB array. For example, you can specify a scalar, vector, matrix, cell array, character array, table, or structure. Use this property to store arbitrary data on an object.
If you are working in App Designer, create public or private properties in the app to share data instead of using the UserData
property. For more information, see Share Data Within App Designer Apps.
Version History
Comando de MATLAB
Ha hecho clic en un enlace que corresponde a este comando de MATLAB:
Ejecute el comando introduciéndolo en la ventana de comandos de MATLAB. Los navegadores web no admiten comandos de MATLAB.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)