Main Content

Button Properties

Control button appearance and behavior

Buttons are UI components that respond when the user presses and releases them. By changing property values, you can modify the appearance and behavior of a button. Use dot notation to refer to a specific object and property.

fig = uifigure;
b = uibutton(fig);
b.Text = 'Plot';

Button

expand all

Button label, specified as a character vector, cell array of character vectors, string scalar, string array, or 1-D categorical array. Specify a character vector or string scalar to label the button with a single line of text. Use a cell array or string array to label the button with multiple lines of text. Each element in the array represents a separate line of text. If you specify this property as a categorical array, MATLAB® uses the values in the array, not the full set of categories.

Word wrapping to fit component width, specified as 'off' or 'on', or as numeric or logical 0 (false) or 1 (true). A value of 'off' is equivalent to false, and 'on' is equivalent to true. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

Use this property to prevent text from getting clipped horizontally when the width of the component is smaller than the text you want to display.

  • 'off' — Text does not wrap.

  • 'on' — Breaks text into new lines so that each line fits within the width of the component and avoids breaking words when possible.

Setting the WordWrap property to 'on' does not prevent text from getting clipped vertically when the height of the component is too small to display all the lines of text.

Predefined or custom icon, specified as a character vector, string scalar, or m-by-n-by-3 truecolor image array.

Predefined Icon

This table lists the values to specify the predefined icons.

ValueIcon
'' (default)No icon displays.
'question'

Question icon

'info'

Info icon

'success'

Success icon

'warning'

Warning icon

'error'

Error icon

Custom Icon

Specify a custom icon as one of these values:

  • A character vector or string scalar that specifies the file name of an SVG, JPEG, GIF, or PNG image that is on the MATLAB path. Alternatively, you can specify a full path to the image file.

  • An m-by-n-by-3 truecolor image array. See Working with Image Types in MATLAB for more information.

If you plan to share an app with others, put the image file on the MATLAB path to facilitate app packaging.

If the button text takes up all the space specified by the Position property value, then MATLAB does not display the icon. If some room is available for the icon, then MATLAB scales down the image to fit, if necessary.

Font and Color

expand all

Font name, specified as a system supported font name. The default font depends on the specific operating system and locale.

If the specified font is not available, then MATLAB uses the best match among the fonts available on the system where the app is running.

Example: 'Arial'

Font size, specified as a positive number. The units of measurement are pixels. The default font size depends on the specific operating system and locale.

Example: 14

Font weight, specified as one of these values:

  • 'normal' — Default weight as defined by the particular font

  • 'bold' — Thicker character outlines than 'normal'

Not all fonts have a bold font weight. For fonts that do not, specifying 'bold' results in the normal font weight.

Font angle, specified as 'normal' or 'italic'. Not all fonts have an italic font angle. For fonts that do not, specifying 'italic' results in the normal font angle.

Font color, specified as an RGB triplet, a hexadecimal color code, or one of the options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

  • An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7].

  • A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case sensitive. Thus, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

Color NameShort NameRGB TripletHexadecimal Color CodeAppearance
"red""r"[1 0 0]"#FF0000"

Sample of the color red

"green""g"[0 1 0]"#00FF00"

Sample of the color green

"blue""b"[0 0 1]"#0000FF"

Sample of the color blue

"cyan" "c"[0 1 1]"#00FFFF"

Sample of the color cyan

"magenta""m"[1 0 1]"#FF00FF"

Sample of the color magenta

"yellow""y"[1 1 0]"#FFFF00"

Sample of the color yellow

"black""k"[0 0 0]"#000000"

Sample of the color black

"white""w"[1 1 1]"#FFFFFF"

Sample of the color white

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.

RGB TripletHexadecimal Color CodeAppearance
[0 0.4470 0.7410]"#0072BD"

Sample of RGB triplet [0 0.4470 0.7410], which appears as dark blue

[0.8500 0.3250 0.0980]"#D95319"

Sample of RGB triplet [0.8500 0.3250 0.0980], which appears as dark orange

[0.9290 0.6940 0.1250]"#EDB120"

Sample of RGB triplet [0.9290 0.6940 0.1250], which appears as dark yellow

[0.4940 0.1840 0.5560]"#7E2F8E"

Sample of RGB triplet [0.4940 0.1840 0.5560], which appears as dark purple

[0.4660 0.6740 0.1880]"#77AC30"

Sample of RGB triplet [0.4660 0.6740 0.1880], which appears as medium green

[0.3010 0.7450 0.9330]"#4DBEEE"

Sample of RGB triplet [0.3010 0.7450 0.9330], which appears as light blue

[0.6350 0.0780 0.1840]"#A2142F"

Sample of RGB triplet [0.6350 0.0780 0.1840], which appears as dark red

Background color, specified as an RGB triplet, a hexadecimal color code, or one of the color options listed in the table.

RGB triplets and hexadecimal color codes are useful for specifying custom colors.

  • An RGB triplet is a three-element row vector whose elements specify the intensities of the red, green, and blue components of the color. The intensities must be in the range [0,1]; for example, [0.4 0.6 0.7].

  • A hexadecimal color code is a character vector or a string scalar that starts with a hash symbol (#) followed by three or six hexadecimal digits, which can range from 0 to F. The values are not case sensitive. Thus, the color codes "#FF8800", "#ff8800", "#F80", and "#f80" are equivalent.

Alternatively, you can specify some common colors by name. This table lists the named color options, the equivalent RGB triplets, and hexadecimal color codes.

Color NameShort NameRGB TripletHexadecimal Color CodeAppearance
"red""r"[1 0 0]"#FF0000"

Sample of the color red

"green""g"[0 1 0]"#00FF00"

Sample of the color green

"blue""b"[0 0 1]"#0000FF"

Sample of the color blue

"cyan" "c"[0 1 1]"#00FFFF"

Sample of the color cyan

"magenta""m"[1 0 1]"#FF00FF"

Sample of the color magenta

"yellow""y"[1 1 0]"#FFFF00"

Sample of the color yellow

"black""k"[0 0 0]"#000000"

Sample of the color black

"white""w"[1 1 1]"#FFFFFF"

Sample of the color white

Here are the RGB triplets and hexadecimal color codes for the default colors MATLAB uses in many types of plots.

RGB TripletHexadecimal Color CodeAppearance
[0 0.4470 0.7410]"#0072BD"

Sample of RGB triplet [0 0.4470 0.7410], which appears as dark blue

[0.8500 0.3250 0.0980]"#D95319"

Sample of RGB triplet [0.8500 0.3250 0.0980], which appears as dark orange

[0.9290 0.6940 0.1250]"#EDB120"

Sample of RGB triplet [0.9290 0.6940 0.1250], which appears as dark yellow

[0.4940 0.1840 0.5560]"#7E2F8E"

Sample of RGB triplet [0.4940 0.1840 0.5560], which appears as dark purple

[0.4660 0.6740 0.1880]"#77AC30"

Sample of RGB triplet [0.4660 0.6740 0.1880], which appears as medium green

[0.3010 0.7450 0.9330]"#4DBEEE"

Sample of RGB triplet [0.3010 0.7450 0.9330], which appears as light blue

[0.6350 0.0780 0.1840]"#A2142F"

Sample of RGB triplet [0.6350 0.0780 0.1840], which appears as dark red

Interactivity

expand all

State of visibility, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

  • 'on' — Display the object.

  • 'off' — Hide the object without deleting it. You still can access the properties of an invisible UI component.

To make your app start faster, set the Visible property to 'off' for all UI components that do not need to appear at startup.

Operational state, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

  • If you set this property to 'on', the app user can interact with the component.

  • If you set this property to 'off', the component appears dimmed, indicating that the app user cannot interact with it, and that it will not trigger a callback.

Tooltip, specified as a character vector, cell array of character vectors, string array, or 1-D categorical array. Use this property to display a message when the user hovers the pointer over the component at run time. The tooltip displays even when the component is disabled. To display multiple lines of text, specify a cell array of character vectors or a string array. Each element in the array becomes a separate line of text. If you specify this property as a categorical array, MATLAB uses the values in the array, not the full set of categories.

Context menu, specified as a ContextMenu object created using the uicontextmenu function. Use this property to display a context menu when you right-click on a component.

Position

expand all

Location and size of button, specified as the vector of the form [left bottom width height]. This table describes each element in the vector.

ElementDescription
leftDistance from the inner left edge of the parent container to the outer left edge of the button
bottomDistance from the inner bottom edge of the parent container to the outer bottom edge of the button
widthDistance between the right and left outer edges of the button
heightDistance between the top and bottom outer edges of the button

The Position values are relative to the drawable area of the parent container. The drawable area is the area inside the borders of the container and does not include the area occupied by decorations such as a menu bar or title.

All measurements are in pixel units.

Location and size of button, specified as a four element vector of the form [left bottom width height]. All measurements are in pixel units. This property value is identical to the Position property.

This property is read-only.

Location and size of button, returned as a four element vector of the form [left bottom width height]. All measurements are in pixel units. This property value is identical to the Position property.

Horizontal alignment of the icon and text, specified as 'center', 'left', or 'right'. The horizontal alignment is relative to the area inside the borders of the button. Setting this property when the text spans the full width of the button has no apparent effect in the UI.

Vertical alignment of the icon and the text, specified as 'center', 'top', or 'bottom'. The vertical alignment is relative to the area inside the borders of the button. Setting this property when the text height fills the height of the button has no apparent effect in the UI.

Location of the button icon, specified as one of the values in the table. The examples in the table show the result of specifying each IconAlignment value for a button with a HorizontalAlignment value of 'center'.

ValueDescriptionExample
'left'The icon displays directly to the left of the button text.

Button with centered text and a green check mark icon directly to the left of the text

'right'The icon displays directly to the right of the button text.

Button with centered text and a green check mark icon directly to the right of the text

'center'The icon displays at the center of the button, behind the text.

Button with centered text and a green check mark icon centered behind the text

'leftmargin'

The icon displays on the far left of the button, regardless of the text location.

This value is equivalent to 'left' when the value of HorizontalAlignment is 'left'.

Button with centered text and a green check mark icon on the far left side of the button

'rightmargin'

The icon displays on the far right of the button, regardless of the text location.

This value is equivalent to 'right' when the value of HorizontalAlignment is 'right'.

Button with centered text and a green check mark icon on the far right side of the button

'top'The icon displays directly above the button text.

Button with centered text and a green check mark icon directly above the text

'bottom'The icon displays directly below the button text.

Button with centered text and a green check mark icon directly below the text

If the Text property of the button is empty, then the icon location is determined by the HorizontalAlignment and VerticalAlignment properties instead of the IconAlignment property.

Layout options, specified as a GridLayoutOptions object. This property specifies options for components that are children of grid layout containers. If the component is not a child of a grid layout container (for example, it is a child of a figure or panel), then this property is empty and has no effect. However, if the component is a child of a grid layout container, you can place the component in the desired row and column of the grid by setting the Row and Column properties on the GridLayoutOptions object.

For example, this code places a button in the third row and second column of its parent grid.

g = uigridlayout([4 3]);
b = uibutton(g);
b.Layout.Row = 3;
b.Layout.Column = 2;

To make the button span multiple rows or columns, specify the Row or Column property as a two-element vector. For example, this button spans columns 2 through 3:

b.Layout.Column = [2 3];

Callbacks

expand all

Button pushed callback, specified as one of these values:

  • A function handle.

  • A cell array in which the first element is a function handle. Subsequent elements in the cell array are the arguments to pass to the callback function.

  • A character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates this expression in the base workspace.

This callback executes when the user clicks the button in the app.

This callback function can access specific information about the user’s interaction with the button. MATLAB passes this information in a ButtonPushedData object as the second argument to your callback function. In App Designer, the argument is called event. You can query the object’s properties using dot notation. For example, event.Source returns the Button object. The ButtonPushedData object is not available to callback functions specified as character vectors.

The following table lists the properties of the ButtonPushedData object.

PropertyValue
EventName'ButtonPushed'
SourceComponent that executes the callback

For more information about writing callbacks, see Callbacks in App Designer.

Object creation function, specified as one of these values:

  • Function handle.

  • Cell array in which the first element is a function handle. Subsequent elements in the cell array are the arguments to pass to the callback function.

  • Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or character vector, see Callbacks in App Designer.

This property specifies a callback function to execute when MATLAB creates the object. MATLAB initializes all property values before executing the CreateFcn callback. If you do not specify the CreateFcn property, then MATLAB executes a default creation function.

Setting the CreateFcn property on an existing component has no effect.

If you specify this property as a function handle or cell array, you can access the object that is being created using the first argument of the callback function. Otherwise, use the gcbo function to access the object.

Object deletion function, specified as one of these values:

  • Function handle.

  • Cell array in which the first element is a function handle. Subsequent elements in the cell array are the arguments to pass to the callback function.

  • Character vector containing a valid MATLAB expression (not recommended). MATLAB evaluates this expression in the base workspace.

For more information about specifying a callback as a function handle, cell array, or character vector, see Callbacks in App Designer.

This property specifies a callback function to execute when MATLAB deletes the object. MATLAB executes the DeleteFcn callback before destroying the properties of the object. If you do not specify the DeleteFcn property, then MATLAB executes a default deletion function.

If you specify this property as a function handle or cell array, you can access the object that is being deleted using the first argument of the callback function. Otherwise, use the gcbo function to access the object.

Callback Execution Control

expand all

Callback interruption, specified as 'on' or 'off', or as numeric or logical 1 (true) or 0 (false). A value of 'on' is equivalent to true, and 'off' is equivalent to false. Thus, you can use the value of this property as a logical value. The value is stored as an on/off logical value of type matlab.lang.OnOffSwitchState.

This property determines if a running callback can be interrupted. There are two callback states to consider:

  • The running callback is the currently executing callback.

  • The interrupting callback is a callback that tries to interrupt the running callback.

MATLAB determines callback interruption behavior whenever it executes a command that processes the callback queue. These commands include drawnow, figure, uifigure, getframe, waitfor, and pause.

If the running callback does not contain one of these commands, then no interruption occurs. MATLAB first finishes executing the running callback, and later executes the interrupting callback.

If the running callback does contain one of these commands, then the Interruptible property of the object that owns the running callback determines if the interruption occurs:

  • If the value of Interruptible is 'off', then no interruption occurs. Instead, the BusyAction property of the object that owns the interrupting callback determines if the interrupting callback is discarded or added to the callback queue.

  • If the value of Interruptible is 'on', then the interruption occurs. The next time MATLAB processes the callback queue, it stops the execution of the running callback and executes the interrupting callback. After the interrupting callback completes, MATLAB then resumes executing the running callback.

Note

Callback interruption and execution behave differently in these situations:

  • If the interrupting callback is a DeleteFcn, CloseRequestFcn, or SizeChangedFcn callback, then the interruption occurs regardless of the Interruptible property value.

  • If the running callback is currently executing the waitfor function, then the interruption occurs regardless of the Interruptible property value.

  • If the interrupting callback is owned by a Timer object, then the callback executes according to schedule regardless of the Interruptible property value.

Note

When an interruption occurs, MATLAB does not save the state of properties or the display. For example, the object returned by the gca or gcf command might change when another callback executes.

Callback queuing, specified as 'queue' or 'cancel'. The BusyAction property determines how MATLAB handles the execution of interrupting callbacks. There are two callback states to consider:

  • The running callback is the currently executing callback.

  • The interrupting callback is a callback that tries to interrupt the running callback.

The BusyAction property determines callback queuing behavior only when both of these conditions are met:

  • The running callback contains a command that processes the callback queue, such as drawnow, figure, uifigure, getframe, waitfor, or pause.

  • The value of the Interruptible property of the object that owns the running callback is 'off'.

Under these conditions, the BusyAction property of the object that owns the interrupting callback determines how MATLAB handles the interrupting callback. These are possible values of the BusyAction property:

  • 'queue' — Puts the interrupting callback in a queue to be processed after the running callback finishes execution.

  • 'cancel' — Does not execute the interrupting callback.

This property is read-only.

Deletion status, returned as an on/off logical value of type matlab.lang.OnOffSwitchState.

MATLAB sets the BeingDeleted property to 'on' when the DeleteFcn callback begins execution. The BeingDeleted property remains set to 'on' until the component object no longer exists.

Check the value of the BeingDeleted property to verify that the object is not about to be deleted before querying or modifying it.

Parent/Child

expand all

Parent container, specified as a Figure object created using the uifigure function, or one of its child containers: Tab, Panel, ButtonGroup, or GridLayout. If no container is specified, MATLAB calls the uifigure function to create a new Figure object that serves as the parent container.

Visibility of the object handle, specified as 'on', 'callback', or 'off'.

This property controls the visibility of the object in its parent's list of children. When an object is not visible in its parent's list of children, it is not returned by functions that obtain objects by searching the object hierarchy or querying properties. These functions include get, findobj, clf, and close. Objects are valid even if they are not visible. If you can access an object, you can set and get its properties, and pass it to any function that operates on objects.

HandleVisibility ValueDescription
'on'The object is always visible.
'callback'The object is visible from within callbacks or functions invoked by callbacks, but not from within functions invoked from the command line. This option blocks access to the object at the command-line, but allows callback functions to access it.
'off'The object is invisible at all times. This option is useful for preventing unintended changes to the UI by another function. Set the HandleVisibility to 'off' to temporarily hide the object during the execution of that function.

Identifiers

expand all

This property is read-only.

Type of graphics object, returned as 'uibutton'.

Object identifier, specified as a character vector or string scalar. You can specify a unique Tag value to serve as an identifier for an object. When you need access to the object elsewhere in your code, you can use the findobj function to search for the object based on the Tag value.

User data, specified as any MATLAB array. For example, you can specify a scalar, vector, matrix, cell array, character array, table, or structure. Use this property to store arbitrary data on an object.

If you are working in App Designer, create public or private properties in the app to share data instead of using the UserData property. For more information, see Share Data Within App Designer Apps.

Version History

Introduced in R2016a

expand all

See Also

Functions

Tools