Main Content

Esta página aún no se ha traducido para esta versión. Puede ver la versión más reciente de esta página en inglés.

Aplicación de aprendizaje de clasificación

Entrena, valida y ajusta de forma interactiva los modelos de clasificación

Elija entre varios algoritmos para entrenar y validar modelos de clasificación para problemas binarios o multiclase. Después de entrenar varios modelos, compare sus errores de validación en paralelo y, a continuación, elija el mejor modelo. Para ayudarle a decidir qué algoritmo utilizar, consulte .Modelos de clasificación de trenes en la aplicación de aprendizaje de clasificación

Este diagrama de flujo muestra un flujo de trabajo común para los modelos de clasificación de entrenamiento o clasificadores en la aplicación Classification Learner.

Apps

Capacitar modelos para clasificar datos mediante aprendizaje automático supervisado
Aprendiz de ClasificaciónCapacitar modelos para clasificar datos mediante aprendizaje automático supervisado

Temas

Flujo de trabajo común

Modelos de clasificación de trenes en la aplicación de aprendizaje de clasificación

Flujo de trabajo para la formación, la comparación y la mejora de los modelos de clasificación, incluida la formación automatizada, manual y paralela.

Select Data and Validation for Classification Problem

Import data into Classification Learner from the workspace or files, find example data sets, and choose cross-validation or holdout validation options.

Choose Classifier Options

In Classification Learner, automatically train a selection of models, or compare and tune options in decision tree, discriminant analysis, logistic regression, naive Bayes, support vector machine, nearest neighbor, and ensemble models.

Assess Classifier Performance in Classification Learner

Compare model accuracy scores, visualize results by plotting class predictions, and check performance per class in the Confusion Matrix.

Export Classification Model to Predict New Data

After training in Classification Learner, export models to the workspace, generate MATLAB® code, or generate C code for prediction.

Train Decision Trees Using Classification Learner App

Create and compare classification trees, and export trained models to make predictions for new data.

Train Discriminant Analysis Classifiers Using Classification Learner App

Create and compare discriminant analysis classifiers, and export trained models to make predictions for new data.

Train Logistic Regression Classifiers Using Classification Learner App

Create and compare logistic regression classifiers, and export trained models to make predictions for new data.

Train Naive Bayes Classifiers Using Classification Learner App

Create and compare naive Bayes classifiers, and export trained models to make predictions for new data.

Train Support Vector Machines Using Classification Learner App

Create and compare support vector machine (SVM) classifiers, and export trained models to make predictions for new data.

Train Nearest Neighbor Classifiers Using Classification Learner App

Create and compare nearest neighbor classifiers, and export trained models to make predictions for new data.

Train Ensemble Classifiers Using Classification Learner App

Create and compare ensemble classifiers, and export trained models to make predictions for new data.

Flujo de trabajo personalizado

Feature Selection and Feature Transformation Using Classification Learner App

Identify useful predictors using plots, manually select features to include, and transform features using PCA in Classification Learner.

Misclassification Costs in Classification Learner App

Before training any classification models, specify the costs associated with misclassifying the observations of one class into another.

Train and Compare Classifiers Using Misclassification Costs in Classification Learner App

Create classifiers after specifying misclassification costs, and compare the accuracy and total misclassification cost of the models.

Hyperparameter Optimization in Classification Learner App

Automatically tune hyperparameters of classification models by using hyperparameter optimization.

Train Classifier Using Hyperparameter Optimization in Classification Learner App

Train a classification support vector machine (SVM) model with optimized hyperparameters.

Export Plots in Classification Learner App

Export and customize plots created before and after training.

Code Generation and Classification Learner App

Train a classification model using the Classification Learner app, and generate C/C++ code for prediction.

Información relacionada