Main Content

La traducción de esta página aún no se ha actualizado a la versión más reciente. Haga clic aquí para ver la última versión en inglés.

Árboles de clasificación

Árboles de decisión binarios para aprendizaje multiclase

Para aumentar un árbol de clasificación de forma interactiva, utilice la app Classification Learner. Para mayor flexibilidad, aumente un árbol de clasificación mediante fitctree en la línea de comandos. Tras aumentar un árbol de clasificación, prediga las etiquetas pasando el árbol y los nuevos datos de los predictores a predict.

Apps

Classification LearnerEntrenar modelos para clasificar datos usando machine learning supervisado

Bloques

ClassificationTree PredictClassify observations using decision tree classifier

Funciones

expandir todo

fitctreeFit binary decision tree for multiclass classification
compactCompact tree
pruneProduce sequence of classification subtrees by pruning
cvlossClassification error by cross validation
limeLocal interpretable model-agnostic explanations (LIME)
nodeVariableRangeRetrieve variable range of decision tree node
partialDependenceCompute partial dependence
plotPartialDependenceCreate partial dependence plot (PDP) and individual conditional expectation (ICE) plots
predictorImportanceEstimates of predictor importance for classification tree
shapleyShapley values
surrogateAssociationMean predictive measure of association for surrogate splits in classification tree
viewView classification tree
crossvalCross-validated decision tree
kfoldEdgeClassification edge for cross-validated classification model
kfoldLossClassification loss for cross-validated classification model
kfoldMarginClassification margins for cross-validated classification model
kfoldPredictClassify observations in cross-validated classification model
kfoldfunCross-validate function for classification
lossClassification error
resubLossClassification error by resubstitution
compareHoldoutCompare accuracies of two classification models using new data
edgeClassification edge
marginClassification margins
resubEdgeClassification edge by resubstitution
resubMarginClassification margins by resubstitution
testckfoldCompare accuracies of two classification models by repeated cross-validation
predictPredict labels using classification tree
resubPredictPredict resubstitution labels of classification tree
gatherGather properties of Statistics and Machine Learning Toolbox object from GPU

Clases

ClassificationTreeBinary decision tree for multiclass classification
CompactClassificationTreeCompact classification tree
ClassificationPartitionedModelCross-validated classification model

Temas