Capacidad de interpretación
Entrene modelos de clasificación interpretables e interprete modelos de clasificación complejos
Emplee modelos de clasificación interpretables por naturaleza, por ejemplo, modelos lineales, árboles de decisión y modelos aditivos generalizados, o utilice las funcionalidades de interpretación para interpretar modelos de clasificación complejos que no son interpretables por naturaleza.
Para saber cómo interpretar modelos de clasificación, consulte Interpret Machine Learning Models.
Funciones
Objetos
ClassificationGAM | Generalized additive model (GAM) for binary classification (desde R2021a) |
ClassificationLinear | Linear model for binary classification of high-dimensional data |
ClassificationTree | Binary decision tree for multiclass classification |
Temas
Interpretación de modelos
- Interpret Machine Learning Models
Explain model predictions using thelime
andshapley
objects and theplotPartialDependence
function. - Shapley Values for Machine Learning Model
Compute Shapley values for a machine learning model using interventional algorithm or conditional algorithm. - Shapley Output Functions
Stop Shapley computations, create plots, save information to your workspace, or perform calculations while usingshapley
. - Introduction to Feature Selection
Learn about feature selection algorithms and explore the functions available for feature selection. - Explain Model Predictions for Classifiers Trained in Classification Learner App
To understand how trained classifiers use predictors to make predictions, use global and local interpretability tools, such as partial dependence plots, LIME values, and Shapley values. - Use Partial Dependence Plots to Interpret Classifiers Trained in Classification Learner App
Determine how features are used in trained classifiers by creating partial dependence plots.
Modelos interpretables
- Train Generalized Additive Model for Binary Classification
Train a generalized additive model (GAM) with optimal parameters, assess predictive performance, and interpret the trained model. - Train Decision Trees Using Classification Learner App
Create and compare classification trees, and export trained models to make predictions for new data. - Classification Using Nearest Neighbors
Categorize data points based on their distance to points in a training data set, using a variety of distance metrics.