fitted
Class: GeneralizedLinearMixedModel
Fitted responses from generalized linear mixed-effects model
Description
Input Arguments
Generalized linear mixed-effects model, specified as a GeneralizedLinearMixedModel
object.
For properties and methods of this object, see GeneralizedLinearMixedModel
.
Indicator for conditional response, specified as one of the following.
Value | Description |
---|---|
true | Contributions from both fixed effects and random effects (conditional) |
false | Contribution from only fixed effects (marginal) |
To obtain fitted marginal response values, fitted
computes the conditional mean of the response with the
empirical Bayes predictor vector of random effects b set
equal to 0. For more information, see Conditional and Marginal Response
Example: Conditional=false
Output Arguments
Fitted response values, returned as an n-by-1 vector, where n is the number of observations.
Examples
Load the sample data.
load mfr
This simulated data is from a manufacturing company that operates 50 factories across the world, with each factory running a batch process to create a finished product. The company wants to decrease the number of defects in each batch, so it developed a new manufacturing process. To test the effectiveness of the new process, the company selected 20 of its factories at random to participate in an experiment: Ten factories implemented the new process, while the other ten continued to run the old process. In each of the 20 factories, the company ran five batches (for a total of 100 batches) and recorded the following data:
Flag to indicate whether the batch used the new process (
newprocess
)Processing time for each batch, in hours (
time
)Temperature of the batch, in degrees Celsius (
temp
)Categorical variable indicating the supplier (
A
,B
, orC
) of the chemical used in the batch (supplier
)Number of defects in the batch (
defects
)
The data also includes time_dev
and temp_dev
, which represent the absolute deviation of time and temperature, respectively, from the process standard of 3 hours at 20 degrees Celsius.
Fit a generalized linear mixed-effects model using newprocess
, time_dev
, temp_dev
, and supplier
as fixed-effects predictors. Include a random-effects term for intercept grouped by factory
, to account for quality differences that might exist due to factory-specific variations. The response variable defects
has a Poisson distribution, and the appropriate link function for this model is log. Use the Laplace fit method to estimate the coefficients. Specify the dummy variable encoding as 'effects'
, so the dummy variable coefficients sum to 0.
The number of defects can be modeled using a Poisson distribution
This corresponds to the generalized linear mixed-effects model
where
is the number of defects observed in the batch produced by factory during batch .
is the mean number of defects corresponding to factory (where ) during batch (where ).
, , and are the measurements for each variable that correspond to factory during batch . For example, indicates whether the batch produced by factory during batch used the new process.
and are dummy variables that use effects (sum-to-zero) coding to indicate whether company
C
orB
, respectively, supplied the process chemicals for the batch produced by factory during batch .is a random-effects intercept for each factory that accounts for factory-specific variation in quality.
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)', ... 'Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');
Generate the fitted conditional mean values for the model.
mufit = fitted(glme);
Create a scatterplot of the observed values versus fitted values.
figure scatter(mfr.defects,mufit) title('Residuals versus Fitted Values') xlabel('Fitted Values') ylabel('Residuals')
More About
A conditional response includes contributions from both fixed- and random-effects predictors. A marginal response includes contribution from only fixed effects.
Suppose the generalized linear mixed-effects model glme
has
an n-by-p fixed-effects design
matrix X
and an n-by-q random-effects
design matrix Z
. Also, suppose the estimated p-by-1
fixed-effects vector is ,
and the q-by-1 empirical Bayes predictor vector
of random effects is .
The fitted conditional response corresponds to the 'Conditional',true
name-value
pair argument, and is defined as
where is the linear predictor including the fixed- and random-effects of the generalized linear mixed-effects model
The fitted marginal response corresponds to the 'Conditional',false
name-value
pair argument, and is defined as
where is the linear predictor including only the fixed-effects portion of the generalized linear mixed-effects model
See Also
GeneralizedLinearMixedModel
| fitglme
| residuals
| response
| designMatrix
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Seleccione un país/idioma
Seleccione un país/idioma para obtener contenido traducido, si está disponible, y ver eventos y ofertas de productos y servicios locales. Según su ubicación geográfica, recomendamos que seleccione: .
También puede seleccionar uno de estos países/idiomas:
Cómo obtener el mejor rendimiento
Seleccione China (en idioma chino o inglés) para obtener el mejor rendimiento. Los sitios web de otros países no están optimizados para ser accedidos desde su ubicación geográfica.
América
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)