Main Content

Esta página aún no se ha traducido para esta versión. Puede ver la versión más reciente de esta página en inglés.

Efectos mixtos

Modelos lineales generalizados de efectos mixtos

Clases

GeneralizedLinearMixedModelGeneralized linear mixed-effects model class

Funciones

fitglmeFit generalized linear mixed-effects model
dispDisplay generalized linear mixed-effects model
predictPredict response of generalized linear mixed-effects model
randomGenerate random responses from fitted generalized linear mixed-effects model
fixedEffectsEstimates of fixed effects and related statistics
randomEffectsEstimates of random effects and related statistics
designMatrixFixed- and random-effects design matrices
fittedFitted responses from generalized linear mixed-effects model
responseResponse vector of generalized linear mixed-effects model
anovaAnalysis of variance for generalized linear mixed-effects model
coefCIConfidence intervals for coefficients of generalized linear mixed-effects model
coefTestHypothesis test on fixed and random effects of generalized linear mixed-effects model
compareCompare generalized linear mixed-effects models
covarianceParametersExtract covariance parameters of generalized linear mixed-effects model
plotPartialDependenceCreate partial dependence plot (PDP) and individual conditional expectation (ICE) plots
plotResidualsPlot residuals of generalized linear mixed-effects model
residualsResiduals of fitted generalized linear mixed-effects model
refit Refit generalized linear mixed-effects model

Ejemplos y procedimientos

Fit a Generalized Linear Mixed-Effects Model

Fit a generalized linear mixed-effects model (GLME) to sample data.

Conceptos

Generalized Linear Mixed-Effects Models

Generalized linear mixed-effects (GLME) models describe the relationship between a response variable and independent variables using coefficients that can vary with respect to one or more grouping variables, for data with a response variable distribution other than normal.

Wilkinson Notation

Wilkinson notation provides a way to describe regression and repeated measures models without specifying coefficient values.