Main Content

jacobiCN

Jacobi CN elliptic function

Description

example

jacobiCN(u,m) returns the Jacobi CN Elliptic Function of u and m. If u or m is an array, then jacobiCN acts element-wise.

Examples

collapse all

jacobiCN(2,1)
ans =
    0.2658

Call jacobiCN on array inputs. jacobiCN acts element-wise when u or m is an array.

jacobiCN([2 1 -3],[1 2 3])
ans =
    0.2658    0.7405    0.8165

Convert numeric input to symbolic form using sym, and find the Jacobi CN elliptic function. For symbolic input where u = 0 or m = 0 or 1, jacobiCN returns exact symbolic output.

jacobiCN(sym(2),sym(1))
ans =
1/cosh(2)

Show that for other values of u or m, jacobiCN returns an unevaluated function call.

jacobiCN(sym(2),sym(3))
ans =
jacobiCN(2, 3)

For symbolic variables or expressions, jacobiCN returns the unevaluated function call.

syms x y
f = jacobiCN(x,y)
f =
jacobiCN(x, y)

Substitute values for the variables by using subs, and convert values to double by using double.

f = subs(f, [x y], [3 5])
f =
jacobiCN(3, 5)
fVal = double(f)
fVal =
    0.9995

Calculate f to higher precision using vpa.

fVal = vpa(f)
fVal =
0.9995148837279268257000709197021

Plot the Jacobi CN elliptic function using fcontour. Set u on the x-axis and m on the y-axis by using the symbolic function f with the variable order (u,m). Fill plot contours by setting Fill to on.

syms f(u,m)
f(u,m) = jacobiCN(u,m);
fcontour(f,'Fill','on')
title('Jacobi CN Elliptic Function')
xlabel('u')
ylabel('m')

Figure contains an axes object. The axes object with title Jacobi CN Elliptic Function contains an object of type functioncontour.

Input Arguments

collapse all

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

More About

collapse all

Jacobi CN Elliptic Function

The Jacobi CN elliptic function is cn(u,m) = cos(am(u,m)) where am is the Jacobi amplitude function.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument with periods 4K(m) and 4iK'(m), where K is the complete elliptic integral of the first kind, implemented as ellipticK.

Introduced in R2017b