Main Content

jacobiSC

Jacobi SC elliptic function

Description

example

jacobiSC(u,m) returns the Jacobi SC Elliptic Function of u and m. If u or m is an array, then jacobiSC acts element-wise.

Examples

collapse all

jacobiSC(2,1)
ans =
    3.6269

Call jacobiSC on array inputs. jacobiSC acts element-wise when u or m is an array.

jacobiSC([2 1 -3],[1 2 3])
ans =
    3.6269    0.9077    0.7071

Convert numeric input to symbolic form using sym, and find the Jacobi SC elliptic function. For symbolic input where u = 0 or m = 0 or 1, jacobiSC returns exact symbolic output.

jacobiSC(sym(2),sym(1))
ans =
sinh(2)

Show that for other values of u or m, jacobiSC returns an unevaluated function call.

jacobiSC(sym(2),sym(3))
ans =
jacobiSC(2, 3)

For symbolic variables or expressions, jacobiSC returns the unevaluated function call.

syms x y
f = jacobiSC(x,y)
f =
jacobiSC(x, y)

Substitute values for the variables by using subs, and convert values to double by using double.

f = subs(f, [x y], [3 5])
f =
jacobiSC(3, 5)
fVal = double(f)
fVal =
    0.0312

Calculate f to higher precision using vpa.

fVal = vpa(f)
fVal =
0.031159894327171581127518352857409

Plot the Jacobi SC elliptic function using fcontour. Set u on the x-axis and m on the y-axis by using the symbolic function f with the variable order (u,m). Fill plot contours by setting Fill to on.

syms f(u,m)
f(u,m) = jacobiSC(u,m);
fcontour(f,'Fill','on')
title('Jacobi SC Elliptic Function')
xlabel('u')
ylabel('m')

Figure contains an axes object. The axes object with title Jacobi SC Elliptic Function contains an object of type functioncontour.

Input Arguments

collapse all

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

Input, specified as a number, vector, matrix, or multidimensional array, or a symbolic number, variable, vector, matrix, multidimensional array, function, or expression.

More About

collapse all

Jacobi SC Elliptic Function

The Jacobi SC elliptic function is

sc(u,m) = sn(u,m)/cn(u,m)

where sn and cn are the respective Jacobi elliptic functions.

The Jacobi elliptic functions are meromorphic and doubly periodic in their first argument with periods 4K(m) and 4iK'(m), where K is the complete elliptic integral of the first kind, implemented as ellipticK.

Introduced in R2017b