Contenido principal

Esta página es para la versión anterior. La página correspondiente en inglés ha sido eliminada en la versión actual.

Entrenamiento integrado

Entrene redes de deep learning con datos de imágenes usando funciones de entrenamiento integradas

Después de definir la arquitectura de red, podrá definir los parámetros de entrenamiento con la función trainingOptions. Luego, podrá entrenar la red con la función trainnet. Utilice la red entrenada para predecir etiquetas de clase o respuestas numéricas.

Puede entrenar una red neuronal en una CPU, una GPU, varias CPU o GPU, o en paralelo en un cluster o en la nube. Para entrenar una red en una GPU o en paralelo, es necesario utilizar Parallel Computing Toolbox™. Para usar una GPU, es necesario contar con un dispositivo con GPU compatible (para obtener información sobre los dispositivos compatibles, consulte GPU Computing Requirements (Parallel Computing Toolbox)). Especifique el entorno de ejecución con la función trainingOptions.

Apps

Deep Network DesignerDiseñar y visualizar redes de deep learning

Funciones

expandir todo

trainingOptionsOpciones para entrenar una red neuronal de deep learning
trainnetEntrenar redes neuronales de deep learning (Desde R2023b)
testnetTest deep learning neural network (Desde R2024b)
predictCalcular salidas de redes de deep learning para inferencias
minibatchpredictMini-batched neural network prediction (Desde R2024a)
scores2labelConvert prediction scores to labels (Desde R2024a)
confusionchartCrear una gráfica de matriz de confusión para un problema de clasificación
sortClassesSort classes of confusion matrix chart

Temas

Ejemplos destacados