Main Content

Bucles de entrenamiento personalizados

Personalice bucles de entrenamiento y funciones de pérdida de deep learning para redes de imágenes

Si la función trainingOptions no proporciona las opciones de entrenamiento que necesita para la tarea o tiene una función de pérdida que la función trainnet no admite, puede definir un bucle de entrenamiento personalizado. Para los modelos que no se pueden especificar como redes de capas, puede definir el modelo como una función. Para obtener más información, consulte Define Custom Training Loops, Loss Functions, and Networks.

Funciones

expandir todo

dlnetworkRedes neuronales de deep learning (desde R2019b)
trainingProgressMonitorMonitor and plot training progress for deep learning custom training loops (desde R2022b)
minibatchqueueCreate mini-batches for deep learning (desde R2020b)
dlarrayArreglo de deep learning para personalización (desde R2019b)
dlgradientCompute gradients for custom training loops using automatic differentiation (desde R2019b)
dlfevalEvaluate deep learning model for custom training loops (desde R2019b)
crossentropyCross-entropy loss for classification tasks (desde R2019b)
l1lossL1 loss for regression tasks (desde R2021b)
l2lossL2 loss for regression tasks (desde R2021b)
huberHuber loss for regression tasks (desde R2021a)
mseError cuadrático medio dividido (desde R2019b)
dlconvDeep learning convolution (desde R2019b)
dltranspconvDeep learning transposed convolution (desde R2019b)
fullyconnectSum all weighted input data and apply a bias (desde R2019b)
batchnormNormalize data across all observations for each channel independently (desde R2019b)
crosschannelnormCross channel square-normalize using local responses (desde R2020a)
groupnormNormalize data across grouped subsets of channels for each observation independently (desde R2020b)
instancenormNormalize across each channel for each observation independently (desde R2021a)
layernormNormalize data across all channels for each observation independently (desde R2021a)
avgpoolPool data to average values over spatial dimensions (desde R2019b)
maxpoolPool data to maximum value (desde R2019b)
maxunpoolUnpool the output of a maximum pooling operation (desde R2019b)
reluAplicar la activación de unidad lineal rectificada (desde R2019b)
leakyreluApply leaky rectified linear unit activation (desde R2019b)
geluApply Gaussian error linear unit (GELU) activation (desde R2022b)
softmaxApply softmax activation to channel dimension (desde R2019b)
sigmoidAplicar la activación sigmoide (desde R2019b)

Temas

Bucles de entrenamiento personalizados

Diferenciación automática