Main Content

Visualización e interpretabilidad

Represente el progreso del entrenamiento, evalúe la precisión, explique predicciones y visualice las características aprendidas por una red

Monitorice el progreso del entrenamiento usando gráficas integradas de precisión y pérdida de red. Investigue redes entrenadas usando técnicas de visualización como Grad-CAM, sensibilidad de oclusión, LIME y Deep Dream.

Métodos de visualización de deep learning

Apps

Deep Network DesignerDiseñar, visualizar y entrenar redes de deep learning

Objetos

trainingProgressMonitorMonitor and plot training progress for deep learning custom training loops

Funciones

expandir todo

analyzeNetworkAnalyze deep learning network architecture
plotRepresentar una arquitectura de red neuronal
updateInfoUpdate information values for custom training loops
recordMetricsRecord metric values for custom training loops
groupSubPlotGroup metrics in training plot
activationsCalcular las activaciones de las capas de una red de deep learning
confusionchartCreate confusion matrix chart for classification problem
sortClassesSort classes of confusion matrix chart
rocmetricsReceiver operating characteristic (ROC) curve and performance metrics for binary and multiclass classifiers
addMetricsCompute additional classification performance metrics
averageCompute performance metrics for average receiver operating characteristic (ROC) curve in multiclass problem
plotPlot receiver operating characteristic (ROC) curves and other performance curves
imageLIMEExplain network predictions using LIME
occlusionSensitivityExplain network predictions by occluding the inputs
deepDreamImageVisualize network features using deep dream
gradCAMExplain network predictions using Grad-CAM

Propiedades

ConfusionMatrixChart PropertiesConfusion matrix chart appearance and behavior
ROCCurve PropertiesReceiver operating characteristic (ROC) curve appearance and behavior

Temas

Progreso y rendimiento del entrenamiento

Interpretabilidad