interpolate
Class: nav.StateSpace
Namespace: nav
Interpolate between states
Description
Input Arguments
ssObj
— State space object
object of a subclass of nav.StateSpace
State space object, specified as an object of a subclass of nav.StateSpace
.
state1
— Initial state position
n-element vector
Initial state position, specified as a n-element vector.
n is the dimension of the state space specified in the
NumStateVariables
property of ssObj
.
state2
— Final state position
n-element vector | m-by-n matrix of row vectors
Final state position, specified as a n-element vector.
n is the dimension of the state space specified in the
NumStateVariables
property of ssObj
.
ratios
— Ratio values for interpolating along path
m-element vector
Ratio values for interpolating along path, specified as an m-element vector. These ratios determine how to sample between the two states.
Output Arguments
Examples
Create Custom State Space for Path Planning
This example shows how to use the createPlanningTemplate
function to generate a template for customizing your own state space definition and sampler to use with path planning algorithms. A simple implementation is provided with the template.
Call the create template function. This function generates a class definition file for you to modify for your own implementation.
createPlanningTemplate
Class and Property Definition
The first part of the template specifies the class definition and any properties for the class. Derive from the nav.StateSpace
class. For this example, create a property for the uniform and normal distributions. You can specify any additional user-defined properties here.
classdef MyCustomStateSpace < nav.StateSpace & ... matlabshared.planning.internal.EnforceScalarHandle properties UniformDistribution NormalDistribution % Specify additional properties here end
Save your custom state space class and ensure your file name matches the class name.
Class Constructor
Use the constructor to set the name of the state space, the number of state variables, and define its boundaries. Alternatively, you can add input arguments to the function and pass the variables in when you create an object.
For each state variable, define the
[min max]
values for the state bounds.Call the constructor of the base class.
For this example, you specify the normal and uniform distribution property values using predefined
NormalDistribution
andUniformDistribution
classes.Specify any other user-defined property values here.
methods function obj = MyCustomStateSpace spaceName = "MyCustomStateSpace"; numStateVariables = 3; stateBounds = [-100 100; % [min max] -100 100; -100 100]; obj@nav.StateSpace(spaceName, numStateVariables, stateBounds); obj.NormalDistribution = matlabshared.tracking.internal.NormalDistribution(numStateVariables); obj.UniformDistribution = matlabshared.tracking.internal.UniformDistribution(numStateVariables); % User-defined property values here end
Copy Semantics
Specify the copy
method definition. Copy all the values of your user-defined variables into a new object, so copyObj
is a deep copy. The default behavior given in this example creates a new copy of the object with the same name, state bounds, and distributions.
function copyObj = copy(obj) copyObj = feval(class(obj)); copyObj.StateBounds = obj.StateBounds; copyObj.UniformDistribution = obj.UniformDistribution.copy; copyObj.NormalDistribution = obj.NormalDistribution.copy; end
Enforce State Bounds
Specify how to ensure states are always within the state bounds. For this example, the state values get saturated at the minimum or maximum values for the state bounds.
function boundedState = enforceStateBounds(obj, state) nav.internal.validation.validateStateMatrix(state, nan, obj.NumStateVariables, "enforceStateBounds", "state"); boundedState = state; boundedState = min(max(boundedState, obj.StateBounds(:,1)'), ... obj.StateBounds(:,2)'); end
Sample Uniformly
Specify the behavior for sampling across a uniform distribution. support multiple syntaxes to constrain the uniform distribution to a nearby state within a certain distance and sample multiple states.
STATE = sampleUniform(OBJ) STATE = sampleUniform(OBJ,NUMSAMPLES) STATE = sampleUniform(OBJ,NEARSTATE,DIST) STATE = sampleUniform(OBJ,NEARSTATE,DIST,NUMSAMPLES)
For this example, use a validation function to process a varargin
input that handles the varying input arguments.
function state = sampleUniform(obj, varargin) narginchk(1,4); [numSamples, stateBounds] = obj.validateSampleUniformInput(varargin{:}); obj.UniformDistribution.RandomVariableLimits = stateBounds; state = obj.UniformDistribution.sample(numSamples); end
Sample from Gaussian Distribution
Specify the behavior for sampling across a Gaussian distribution. Support multiple syntaxes for sampling a single state or multiple states.
STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV) STATE = sampleGaussian(OBJ, MEANSTATE, STDDEV, NUMSAMPLES)
function state = sampleGaussian(obj, meanState, stdDev, varargin) narginchk(3,4); [meanState, stdDev, numSamples] = obj.validateSampleGaussianInput(meanState, stdDev, varargin{:}); obj.NormalDistribution.Mean = meanState; obj.NormalDistribution.Covariance = diag(stdDev.^2); state = obj.NormalDistribution.sample(numSamples); state = obj.enforceStateBounds(state); end
Interpolate Between States
Define how to interpolate between two states in your state space. Use an input, fraction
, to determine how to sample along the path between two states. For this example, define a basic linear interpolation method using the difference between states.
function interpState = interpolate(obj, state1, state2, fraction) narginchk(4,4); [state1, state2, fraction] = obj.validateInterpolateInput(state1, state2, fraction); stateDiff = state2 - state1; interpState = state1 + fraction' * stateDiff; end
Calculate Distance Between States
Specify how to calculate the distance between two states in your state space. Use the state1
and state2
inputs to define the start and end positions. Both inputs can be a single state (row vector) or multiple states (matrix of row vectors). For this example, calculate the distance based on the Euclidean distance between each pair of state positions.
function dist = distance(obj, state1, state2) narginchk(3,3); nav.internal.validation.validateStateMatrix(state1, nan, obj.NumStateVariables, "distance", "state1"); nav.internal.validation.validateStateMatrix(state2, size(state1,1), obj.NumStateVariables, "distance", "state2"); stateDiff = bsxfun(@minus, state2, state1); dist = sqrt( sum( stateDiff.^2, 2 ) ); end
Terminate the methods and class sections.
end end
Save your state space class definition. You can now use the class constructor to create an object for your state space.
Version History
Introduced in R2019b
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)