Documentación

Esta página aún no se ha traducido para esta versión. Puede ver la versión más reciente de esta página en inglés.

# loss

Clase: RegressionLinear

Regression loss for linear regression models

## Sintaxis

``L = loss(Mdl,X,Y)``
``L = loss(___,Name,Value)``

## Description

ejemplo

````L = loss(Mdl,X,Y)` returns the mean squared error (MSE) for the linear regression model `Mdl` using predictor data in `X` and corresponding responses in `Y`. `L` contains an MSE for each regularization strength in `Mdl`.```

ejemplo

````L = loss(___,Name,Value)` uses any of the previous syntaxes and additional options specified by one or more `Name,Value` pair arguments. For example, specify that columns in the predictor data correspond to observations or specify the regression loss function.```

## Argumentos de entrada

expandir todo

Linear regression model, specified as a `RegressionLinear` model object. You can create a `RegressionLinear` model object using `fitrlinear`.

Predictor data, specified as an n-by-p full or sparse matrix. This orientation of `X` indicates that rows correspond to individual observations, and columns correspond to individual predictor variables.

### Nota

If you orient your predictor matrix so that observations correspond to columns and specify `'ObservationsIn','columns'`, then you might experience a significant reduction in computation time.

The length of `Y` and the number of observations in `X` must be equal.

Tipos de datos: `single` | `double`

Response data, specified as an n-dimensional numeric vector. The length of `Y` and the number of observations in `X` must be equal.

Tipos de datos: `single` | `double`

### Argumentos de par nombre-valor

Specify optional comma-separated pairs of `Name,Value` arguments. `Name` is the argument name and `Value` is the corresponding value. `Name` must appear inside quotes. You can specify several name and value pair arguments in any order as `Name1,Value1,...,NameN,ValueN`.

Loss function, specified as the comma-separated pair consisting of `'LossFun'` and a built-in loss function name or function handle.

• The following table lists the available loss functions. Specify one using its corresponding value. Also, in the table, $f\left(x\right)=x\beta +b.$

• β is a vector of p coefficients.

• x is an observation from p predictor variables.

• b is the scalar bias.

ValueDescription
`'epsiloninsensitive'`Epsilon-insensitive loss: $\ell \left[y,f\left(x\right)\right]=\mathrm{max}\left[0,|y-f\left(x\right)|-\epsilon \right]$
`'mse'`MSE: $\ell \left[y,f\left(x\right)\right]={\left[y-f\left(x\right)\right]}^{2}$

`'epsiloninsensitive'` is appropriate for SVM learners only.

• Specify your own function using function handle notation.

Let n be the number of observations in `X`. Your function must have this signature

``lossvalue = lossfun(Y,Yhat,W)``
where:

• The output argument `lossvalue` is a scalar.

• You choose the function name (`lossfun`).

• `Y` is an n-dimensional vector of observed responses. `loss` passes the input argument `Y` in for `Y`.

• `Yhat` is an n-dimensional vector of predicted responses, which is similar to the output of `predict`.

• `W` is an n-by-1 numeric vector of observation weights.

Specify your function using `'LossFun',@lossfun`.

Tipos de datos: `char` | `string` | `function_handle`

Predictor data observation dimension, specified as the comma-separated pair consisting of `'ObservationsIn'` and `'columns'` or `'rows'`.

### Nota

If you orient your predictor matrix so that observations correspond to columns and specify `'ObservationsIn','columns'`, then you might experience a significant reduction in optimization-execution time.

Observation weights, specified as the comma-separated pair consisting of `'Weights'` and a numeric vector of positive values. If you supply weights, `loss` computes the weighted classification loss.

Let `n` be the number of observations in `X`.

• `numel(Weights)` must be `n`.

• By default, `Weights` is `ones(n,1)`.

Tipos de datos: `double` | `single`

## Output Arguments

expandir todo

Regression losses, returned as a numeric scalar or row vector. The interpretation of `L` depends on `Weights` and `LossFun`.

`L` is the same size as `Mdl.Lambda`. `L(j)` is the regression loss of the linear regression model trained using the regularization strength `Mdl.Lambda(j)`.

### Nota

If `Mdl.FittedLoss` is `'mse'`, then the loss term in the objective function is half of the MSE. `loss` returns the MSE by default. Therefore, if you use `loss` to check the resubstitution (training) error, then there is a discrepancy between the MSE and optimization results that `fitrlinear` returns.

## Ejemplos

expandir todo

Simulate 10000 observations from this model

` `

• is a 10000-by-1000 sparse matrix with 10% nonzero standard normal elements.

• e is random normal error with mean 0 and standard deviation 0.3.

```rng(1) % For reproducibility n = 1e4; d = 1e3; nz = 0.1; X = sprandn(n,d,nz); Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);```

Train a linear regression model. Reserve 30% of the observations as a holdout sample.

```CVMdl = fitrlinear(X,Y,'Holdout',0.3); Mdl = CVMdl.Trained{1}```
```Mdl = RegressionLinear ResponseName: 'Y' ResponseTransform: 'none' Beta: [1000x1 double] Bias: -0.0066 Lambda: 1.4286e-04 Learner: 'svm' Properties, Methods ```

`CVMdl` is a `RegressionPartitionedLinear` model. It contains the property `Trained`, which is a 1-by-1 cell array holding a `RegressionLinear` model that the software trained using the training set.

Extract the training and test data from the partition definition.

```trainIdx = training(CVMdl.Partition); testIdx = test(CVMdl.Partition);```

Estimate the training- and test-sample MSE.

`mseTrain = loss(Mdl,X(trainIdx,:),Y(trainIdx))`
```mseTrain = 0.1496 ```
`mseTest = loss(Mdl,X(testIdx,:),Y(testIdx))`
```mseTest = 0.1798 ```

Because there is one regularization strength in `Mdl`, `mseTrain` and `mseTest` are numeric scalars.

Simulate 10000 observations from this model

` `

• is a 10000-by-1000 sparse matrix with 10% nonzero standard normal elements.

• e is random normal error with mean 0 and standard deviation 0.3.

```rng(1) % For reproducibility n = 1e4; d = 1e3; nz = 0.1; X = sprandn(n,d,nz); Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1); X = X'; % Put observations in columns for faster training```

Train a linear regression model. Reserve 30% of the observations as a holdout sample.

```CVMdl = fitrlinear(X,Y,'Holdout',0.3,'ObservationsIn','columns'); Mdl = CVMdl.Trained{1}```
```Mdl = RegressionLinear ResponseName: 'Y' ResponseTransform: 'none' Beta: [1000x1 double] Bias: -0.0066 Lambda: 1.4286e-04 Learner: 'svm' Properties, Methods ```

`CVMdl` is a `RegressionPartitionedLinear` model. It contains the property `Trained`, which is a 1-by-1 cell array holding a `RegressionLinear` model that the software trained using the training set.

Extract the training and test data from the partition definition.

```trainIdx = training(CVMdl.Partition); testIdx = test(CVMdl.Partition);```

Create an anonymous function that measures Huber loss ( = 1), that is,

` `

where

` ` is the residual for observation j. Custom loss functions must be written in a particular form. For rules on writing a custom loss function, see the `'LossFun'` name-value pair argument.

```huberloss = @(Y,Yhat,W)sum(W.*((0.5*(abs(Y-Yhat)<=1).*(Y-Yhat).^2) + ... ((abs(Y-Yhat)>1).*abs(Y-Yhat)-0.5)))/sum(W);```

Estimate the training set and test set regression loss using the Huber loss function.

```eTrain = loss(Mdl,X(:,trainIdx),Y(trainIdx),'LossFun',huberloss,... 'ObservationsIn','columns')```
```eTrain = -0.4186 ```
```eTest = loss(Mdl,X(:,testIdx),Y(testIdx),'LossFun',huberloss,... 'ObservationsIn','columns')```
```eTest = -0.4010 ```

Simulate 10000 observations from this model

` `

• is a 10000-by-1000 sparse matrix with 10% nonzero standard normal elements.

• e is random normal error with mean 0 and standard deviation 0.3.

```rng(1) % For reproducibility n = 1e4; d = 1e3; nz = 0.1; X = sprandn(n,d,nz); Y = X(:,100) + 2*X(:,200) + 0.3*randn(n,1);```

Create a set of 15 logarithmically-spaced regularization strengths from through .

`Lambda = logspace(-4,-1,15);`

Hold out 30% of the data for testing. Identify the test-sample indices.

```cvp = cvpartition(numel(Y),'Holdout',0.30); idxTest = test(cvp);```

Train a linear regression model using lasso penalties with the strengths in `Lambda`. Specify the regularization strengths, optimizing the objective function using SpaRSA, and the data partition. To increase execution speed, transpose the predictor data and specify that the observations are in columns.

```X = X'; CVMdl = fitrlinear(X,Y,'ObservationsIn','columns','Lambda',Lambda,... 'Solver','sparsa','Regularization','lasso','CVPartition',cvp); Mdl1 = CVMdl.Trained{1}; numel(Mdl1.Lambda)```
```ans = 15 ```

`Mdl1` is a `RegressionLinear` model. Because `Lambda` is a 15-dimensional vector of regularization strengths, you can think of `Mdl1` as 15 trained models, one for each regularization strength.

Estimate the test-sample mean squared error for each regularized model.

`mse = loss(Mdl1,X(:,idxTest),Y(idxTest),'ObservationsIn','columns');`

Higher values of `Lambda` lead to predictor variable sparsity, which is a good quality of a regression model. Retrain the model using the entire data set and all options used previously, except the data-partition specification. Determine the number of nonzero coefficients per model.

```Mdl = fitrlinear(X,Y,'ObservationsIn','columns','Lambda',Lambda,... 'Solver','sparsa','Regularization','lasso'); numNZCoeff = sum(Mdl.Beta~=0);```

In the same figure, plot the MSE and frequency of nonzero coefficients for each regularization strength. Plot all variables on the log scale.

```figure; [h,hL1,hL2] = plotyy(log10(Lambda),log10(mse),... log10(Lambda),log10(numNZCoeff)); hL1.Marker = 'o'; hL2.Marker = 'o'; ylabel(h(1),'log_{10} MSE') ylabel(h(2),'log_{10} nonzero-coefficient frequency') xlabel('log_{10} Lambda') hold off``` Select the index or indices of `Lambda` that balance minimal classification error and predictor-variable sparsity (for example, `Lambda(11)`).

```idx = 11; MdlFinal = selectModels(Mdl,idx);```

`MdlFinal` is a trained `RegressionLinear` model object that uses `Lambda(11)` as a regularization strength.

Download ebook