Regularización
Para aumentar la precisión en conjuntos de datos de dimensiones bajas y medianas, implemente una regresión de mínimos cuadrados con regularización mediante lasso
o ridge
.
Para reducir el tiempo de cálculo en conjuntos de datos de altas dimensiones, ajuste un modelo de regresión lineal regularizada mediante fitrlinear
.
Funciones
Objetos
RegressionLinear | Linear regression model for high-dimensional data |
RegressionPartitionedLinear | Cross-validated linear regression model for high-dimensional data |
Temas
- Lasso Regularization
See how
lasso
identifies and discards unnecessary predictors. - Lasso and Elastic Net with Cross Validation
Predict the mileage (MPG) of a car based on its weight, displacement, horsepower, and acceleration using
lasso
and elastic net. - Wide Data via Lasso and Parallel Computing
Identify important predictors using
lasso
and cross-validation. - Lasso and Elastic Net
The
lasso
algorithm is a regularization technique and shrinkage estimator. The related elastic net algorithm is more suitable when predictors are highly correlated. - Ridge Regression
Ridge regression addresses the problem of multicollinearity (correlated model terms) in linear regression problems.