Aplicaciones de estadísticas y machine learning
Statistics and Machine Learning Toolbox™ proporciona herramientas para describir, analizar y modelar datos. Puede aplicar estas herramientas, junto con otras toolbox de MATLAB®, para realizar flujos de trabajo de sectores específicos. Algunas de las áreas de aplicación incluyen:
Sector aeroespacial: explorar radares y otras señales, detectar anomalías y construir modelos de predicción.
Biotecnología y farmacia: analizar datos clínicos y realizar modelizaciones y simulaciones para el descubrimiento y desarrollo de fármacos.
Comunicaciones y procesamiento de señales: clasificar señales de audio y otros tipos, y modelar dispositivos inalámbricos y circuitos integrados.
Producción de energía: prever la demanda de energía, monitorizar los equipos de producción y optimizar el procesamiento de productos químicos en el petróleo y el gas.
Maquinaria y automatización industriales: aplicar la estadística multivariante y la modelización predictiva a los datos de los procesos industriales, monitorizar los procesos de fabricación y la calidad de los productos, y mejorar la utilización y el rendimiento.
Dispositivos médicos: crear algoritmos de machine learning interpretables en series temporales biomédicas y datos de imágenes para el desarrollo de aplicaciones cumpliendo las normas reglamentarias.
Finanzas cuantitativas y gestión de riesgos: entrenar, comparar y optimizar modelos para la negociación algorítmica, la asignación de activos, el riesgo crediticio y la detección de fraudes.
Sector aeroespacial
Radar Target Classification Using Machine Learning and Deep Learning (Radar Toolbox)
Classify radar returns using machine and deep learning approaches. (desde R2021a)
Biotecnología y farmacia
Secuenciación de tasa de transferencia alta
- Identifying Differentially Expressed Genes from RNA-Seq Data (Bioinformatics Toolbox)
Use a negative binomial model to test RNA-Seq data for differentially expressed genes. - Exploring Protein-DNA Binding Sites from Paired-End ChIP-Seq Data (Bioinformatics Toolbox)
This example shows how to perform a genome-wide analysis of a transcription factor in the Arabidopsis Thaliana (Thale Cress) model organism.
Descubrimiento de fármacos y farmacología de sistemas cuantitativos
- Perform PK/PD Modeling and Simulation to Guide Dosing Strategy for Antibiotics (SimBiology)
This example shows how to perform a Monte Carlo simulation of a pharmacokinetic/pharmacodynamic (PK/PD) model for an antibacterial agent. - Simulate the Glucose-Insulin Response (SimBiology)
Simulate and analyze a physiologically based glucose-insulin model for normal and diabetic patients.
Procesamiento de comunicaciones y señales
Data Analysis on S-Parameters of RF Data Files (RF Toolbox)
Perform statistical analysis on S-parameter data files using magnitude, mean, and standard deviation.
Wavelet Time Scattering with GPU Acceleration — Spoken Digit Recognition (Wavelet Toolbox)
Extract features on your GPU for signal classification.
Feature Selection for Audio Classification (Audio Toolbox)
Perform audio feature selection to select a feature set for either speaker recognition or word recognition tasks.
Speaker Identification Using Pitch and MFCC (Audio Toolbox)
Use machine learning to identify people based on features extracted from recorded speech.
Speaker Diarization Using x-vectors (Audio Toolbox)
Speaker diarization is the process of partitioning an audio signal into segments according to speaker identity.
Accelerate Audio Machine Learning Workflows Using a GPU (Audio Toolbox)
This example shows how to use GPU computing to accelerate machine learning workflows for audio, speech, and acoustic applications. (desde R2024a)
Generate Synthetic Signals Using Conditional GAN (Signal Processing Toolbox)
Use a conditional generative adversarial network to produce synthetic signals.
Human Activity Recognition Using Signal Feature Extraction and Machine Learning (Signal Processing Toolbox)
Extract features from smartphone sensor signals and use them to classify human activity.
Producción de energía
Análisis predictivo para la gestión de activos
- Wind Turbine High-Speed Bearing Prognosis (Predictive Maintenance Toolbox)
Build an exponential degradation model to predict the Remaining Useful Life (RUL) of a wind turbine bearing in real time. The exponential degradation model predicts the RUL based on its parameter priors and the latest measurements.
Comercio de energía y gestión de riesgos (ETRM)
- Model and Simulate Electricity Spot Prices Using the Skew-Normal Distribution (Econometrics Toolbox)
This example shows how to simulate the future behavior of electricity spot prices from a time series model fitted to historical data. - Hedging Strategies Using Spread Options (Financial Instruments Toolbox)
This example shows different hedging strategies to minimize exposure in the Energy market using Crack Spread Options. - Pricing Swing Options Using the Longstaff-Schwartz Method (Financial Instruments Toolbox)
This example shows how to price a swing option using a Monte Carlo simulation and the Longstaff-Schwartz method.
Maquinaria y automatización industriales
Fault Detection Using Data Based Models (Predictive Maintenance Toolbox)
Use a data-based modeling approach for fault detection.
Anomaly Detection in Industrial Machinery Using Three-Axis Vibration Data (Predictive Maintenance Toolbox)
Detect anomalies in industrial-machine vibration data using machine learning and deep learning.
Build Condition Model for Industrial Machinery and Manufacturing Processes
Train a binary classification model using Classification Learner App to detect anomalies in sensor data collected from an industrial manufacturing machine.
Rolling Element Bearing Fault Diagnosis (Predictive Maintenance Toolbox)
Perform fault diagnosis of a rolling element bearing based on acceleration signals.
Fault Diagnosis of Centrifugal Pumps Using Residual Analysis (Predictive Maintenance Toolbox)
Use a model parity-equations-based approach for detection and diagnosis of faults in a pumping system.
Air Compressor Fault Detection Using Wavelet Scattering (Wavelet Toolbox)
Classify faults in acoustic recordings of air compressors using a wavelet scattering network and a support vector machine. (desde R2021b)
Predict Battery State of Charge Using Machine Learning
Train a Gaussian process regression model to predict the state of charge of a battery in automotive engineering.
Deploy Neural Network Regression Model to FPGA/ASIC Platform
Predict in Simulink® using a neural network regression model, and deploy the Simulink model to an FPGA/ASIC platform by using HDL code generation.
Monitor Equipment State of Health Using Drift-Aware Learning
This example shows how to automate the process of monitoring the state of health for a cooling system using an incremental drift-aware learning model and Streaming Data Framework for MATLAB® Production Server™.
Monitor Equipment State of Health Using Drift-Aware Learning on the Cloud
This example describes the set up necessary to run the deployed version of the Monitor Equipment State of Health Using Drift-Aware Learning example on the cloud.
Dispositivos médicos
Wavelet Time Scattering for ECG Signal Classification (Wavelet Toolbox)
Classify human electrocardiogram signals using wavelet time scattering and a support vector machine classifier.
Wavelet Time Scattering Classification of Phonocardiogram Data (Wavelet Toolbox)
Classify human phonocardiogram recordings using wavelet time scattering and a support vector machine classifier.
Human Activity Recognition Simulink Model for Smartphone Deployment
Generate code from a classification Simulink model prepared for deployment to a smartphone.
Human Activity Recognition Simulink Model for Fixed-Point Deployment
Generate code from a classification Simulink model prepared for fixed-point deployment.
Finanzas cuantitativas y gestión de riesgos
Negociación algorítmica
- Machine Learning for Statistical Arbitrage: Introduction (Financial Toolbox)
Get an overview of the workflow for statistical arbitrage and then follow a series of examples to see how capabilities in MATLAB apply. - Machine Learning for Statistical Arbitrage II: Feature Engineering and Model Development (Financial Toolbox)
Create a continuous-time Markov model of limit order book (LOB) dynamics, and develop a strategy for algorithmic trading based on patterns observed in the data.
Riesgo crediticio
- Forecasting Corporate Default Rates (Financial Toolbox)
This example shows how to build a forecasting model for corporate default rates. - Credit Scoring Using Logistic Regression and Decision Trees (Risk Management Toolbox)
Create and compare two credit scoring models, one based on logistic regression and the other based on decision trees.
Optimización de la cartera y asignación de activos
- Portfolio Optimization Using Factor Models (Financial Toolbox)
This example shows two approaches for using a factor model to optimize asset allocation under a mean-variance framework.
Modelización econométrica
- Time Series Regression I: Linear Models (Econometrics Toolbox)
This example introduces basic assumptions behind multiple linear regression models. - Time Series Regression III: Influential Observations (Econometrics Toolbox)
This example shows how to detect influential observations in time series data and accommodate their effect on multiple linear regression models.
Ejemplos destacados
Predict Battery State of Charge Using Machine Learning
Train a Gaussian process regression model to predict the state of charge of a battery in automotive engineering.
Deploy Neural Network Regression Model to FPGA/ASIC Platform
Predict in Simulink using a neural network regression model, and deploy the Simulink model to an FPGA/ASIC platform by using HDL code generation.
Monitor Equipment State of Health Using Drift-Aware Learning on the Cloud
Describes the set up necessary to run the deployed version of the Monitor Equipment State of Health Using Drift-Aware Learning example on the cloud. The topic shows how to automate the process of monitoring the state of health for a cooling system using an incremental drift-aware learning model using the infrastructure in the next figure. This example requires Statistics and Machine Learning Toolbox™, MATLAB® Compiler SDK™, MATLAB Production Server™, and MATLAB Web App Server™.
Human Activity Recognition Simulink Model for Smartphone Deployment
Generate code from a classification Simulink model prepared for deployment to a smartphone.
Comando de MATLAB
Ha hecho clic en un enlace que corresponde a este comando de MATLAB:
Ejecute el comando introduciéndolo en la ventana de comandos de MATLAB. Los navegadores web no admiten comandos de MATLAB.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)