Reducción de la dimensionalidad y extracción de características
PCA, análisis factorial, selección de características, extracción de características y mucho más
Las técnicas de transformación de características reducen la dimensionalidad de los datos transformándolos en nuevas características. Las técnicas de selección de características son preferibles cuando no es posible la transformación de las variables, p. ej., cuando los datos contienen variables categóricas. Para ver una técnica de selección de características indicada específicamente para el ajuste de mínimos cuadrados, consulte Regresión escalonada.
Tareas de Live Editor
Reduce Dimensionality | Reduce dimensionality using Principal Component Analysis (PCA) in Live Editor |
Funciones
Objetos
Temas
Selección de características
- Introduction to Feature Selection
Learn about feature selection algorithms and explore the functions available for feature selection. - Sequential Feature Selection
This topic introduces sequential feature selection and provides an example that selects features sequentially using a custom criterion and thesequentialfs
function. - Neighborhood Component Analysis (NCA) Feature Selection
Neighborhood component analysis (NCA) is a non-parametric method for selecting features with the goal of maximizing prediction accuracy of regression and classification algorithms.
- Regularize Discriminant Analysis Classifier
Make a more robust and simpler model by removing predictors without compromising the predictive power of the model. - Select Predictors for Random Forests
Select split-predictors for random forests using interaction test algorithm.
Extracción de características
- Feature Extraction
Feature extraction is a set of methods to extract high-level features from data. - Feature Extraction Workflow
This example shows a complete workflow for feature extraction from image data. - Extract Mixed Signals
This example shows how to userica
to disentangle mixed audio signals.
Visualización multidimensional t-SNE
- t-SNE
t-SNE is a method for visualizing high-dimensional data by nonlinear reduction to two or three dimensions, while preserving some features of the original data. - Visualize High-Dimensional Data Using t-SNE
This example shows how t-SNE creates a useful low-dimensional embedding of high-dimensional data. - tsne Settings
This example shows the effects of varioustsne
settings. - t-SNE Output Function
Output function description and example for t-SNE.
PCA y correlación canónica
- Análisis de componentes principales (PCA)
El análisis de componentes principales reduce la dimensionalidad de los datos sustituyendo varias variables correlacionadas por un nuevo conjunto de variables que son combinaciones lineales de las variables originales. - Analyze Quality of Life in U.S. Cities Using PCA
Perform a weighted principal components analysis and interpret the results.
Análisis factorial
- Factor Analysis
Factor analysis is a way to fit a model to multivariate data to estimate interdependence of measured variables on a smaller number of unobserved (latent) factors. - Analyze Stock Prices Using Factor Analysis
Use factor analysis to investigate whether companies within the same sector experience similar week-to-week changes in stock prices. - Perform Factor Analysis on Exam Grades
This example shows how to perform factor analysis using Statistics and Machine Learning Toolbox™.
Factorización de matrices no negativas
- Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a dimension-reduction technique based on a low-rank approximation of the feature space. - Perform Nonnegative Matrix Factorization
Perform nonnegative matrix factorization using the multiplicative and alternating least-squares algorithms.
Escalas multidimensionales
- Multidimensional Scaling
Multidimensional scaling allows you to visualize how near points are to each other for many kinds of distance or dissimilarity metrics and can produce a representation of data in a small number of dimensions. - Classical Multidimensional Scaling
Usecmdscale
to perform classical (metric) multidimensional scaling, also known as principal coordinates analysis. - Classical Multidimensional Scaling Applied to Nonspatial Distances
This example shows how to perform classical multidimensional scaling using thecmdscale
function in Statistics and Machine Learning Toolbox™. - Nonclassical Multidimensional Scaling
This example shows how to visualize dissimilarity data using nonclassical forms of multidimensional scaling (MDS). - Nonclassical and Nonmetric Multidimensional Scaling
Perform nonclassical multidimensional scaling usingmdscale
.
Análisis de Procrustes
- Compare Handwritten Shapes Using Procrustes Analysis
Use Procrustes analysis to compare two handwritten numerals.