comm.SDRuTransmitter
Send data to USRP device
Add-On Required: This feature requires the Wireless Testbench™ Support Package for NI™ USRP™ Radios add-on.
Description
The comm.SDRuTransmitter
System object™ sends data to a USRP™ radio, enabling simulation and development for various software-defined radio
applications; for USRP
200-series radios, see the Communications Toolbox™ documentation.
Use this object to communicate with a USRP radio on the same Ethernet subnetwork. You can write a MATLAB® application that uses the System object, or generate code for the System object without connecting to a USRP radio.
This object accepts a column vector or matrix input signal from MATLAB and transmits signal and control data to a USRP radio using the universal hardware driver (UHD™) from Ettus Research™. The System object is a sink that sends the data it receives to a USRP radio.
To send data from a USRP radio device:
Create the
comm.SDRuTransmitter
object and set its properties.Call the object as if it were a function.
To learn more about how System objects work, see What Are System Objects?.
Note
Starting in R2024a, the MathWorks® products and support packages you require to use this System object depend on your radio device.
Radio Device | Required MathWorks Products | Support Package Installation |
---|---|---|
USRP2™ USRP N200, N210 USRP B200, B210 | Communications Toolbox Support Package for USRP Radio | Install Communications Toolbox Support Package for USRP Radio |
USRP N300, N310, N320, N321 USRP X300, X310 | Wireless Testbench™ Wireless Testbench Support Package for NI™ USRP Radios | Install Support Package for NI USRP Radios |
For details on how to use this System object with a radio device supported by Communications Toolbox Support Package for USRP Radio, see comm.SDRuTransmitter
.
Creation
Syntax
Description
creates an SDRu transmitter System object for a USRP radio with the specified model number at the default IP address,
192.168.10.2.tx
= comm.SDRuTransmitter(Platform
=radioDevice)
creates an SDRu transmitter System object for a USRP radio with the specified model number at the specified IP address.tx
= comm.SDRuTransmitter(Platform
=radioDevice,IPAddress
=radioIPAddress)
sets Properties
using one or more name-value pairs in addition to any input argument combination from
previous syntaxes. For example, tx
= comm.SDRuTransmitter(___,Name
= Value
)CenterFrequency
=
5e6
specifies the center frequency as 5 MHz.
Properties
Unless otherwise indicated, properties are nontunable, which means you cannot change their
values after calling the object. Objects lock when you call them, and the
release
function unlocks them.
If a property is tunable, you can change its value at any time.
For more information on changing property values, see System Design in MATLAB Using System Objects.
Connection PropertiesPlatform
— Model number of radio
"N300"
| "N310"
| "N320/N321"
| "X300"
| "X310"
Model number of the radio, specified as one of these values.
"N300"
— A connected USRP N300 radio."N310"
— A connected USRP N310 radio."N320/N321"
— A connected USRP N320 or USRP N321 radio."X300"
— A connected USRP X300 radio."X310"
— A connected USRP X310 radio.
Data Types: char
| string
IPAddress
— IP address of USRP device
"192.168.10.2"
(default) | character vector | string scalar
IP address of the USRP radio, specified as a character vector or string scalar containing dotted-quad values. When you specify more than one IP address, you must separate each address using commas or spaces.
This value must match the physical IP address of the radio device assigned when you set up your radio using the Radio Setup wizard. If you configure the radio device with an IP address other than the default, update this property accordingly.
To find the logical network location of all connected USRP radios, use the findsdru
function.
Example: "192.168.10.2, 192.168.10.5"
or "192.168.10.2
192.168.10.5"
specifies IP addresses for two radio devices.
Data Types: char
| string
ChannelMapping
— Channel mapping for radio or bundled radios
1
(default) | positive scalar | row vector of positive values
Channel mapping for the radio or bundled radios, specified as a positive scalar or a row vector of positive values. This table shows the valid values for each radio platform.
Platform Property Value |
ChannelMapping Property Value |
---|---|
|
|
|
|
|
|
|
|
| When the
When the
|
When IPAddress
contains multiple IP addresses, the
channels defined by ChannelMapping
are ordered first by the order
in which the IP addresses appear in the list and then by the channel order within the
same radio.
For example, if Platform
is
"X300"
and IPAddress
is
"192.168.20.2, 192.168.10.3"
, then the
ChannelMapping
must be [1 2 3 4]
. Channels 1
and 2 of the bundled radio refer to channels 1 and 2 of the radio with IP address
192.168.20.2, respectively. Channels 3 and 4 of the bundled radio refer to channels 1
and 2 of the radio with IP address 192.168.10.3, respectively.
Data Types: double
CenterFrequency
— Center frequency
2.45e9
| nonnegative scalar | row vector of nonnegative values
Center frequency in Hz, specified as a nonnegative scalar or a row vector of nonnegative values. The valid range of values for this property depends on the RF daughter card of the USRP device.
Specify the center frequency value according to these conditions.
For a single-input single output (SISO) configuration, specify the value for the center frequency as a nonnegative scalar.
For multiple-input multiple output (MIMO) configurations that use the same center frequency, specify the center frequency as a nonnegative scalar. The object sets the center frequency for each channel by using scalar expansion.
For MIMO configurations that use different center frequencies, specify the values in a row vector (for example,
[70e6 100e6]
). The object applies the ith element of the vector to the ith channel that you specify in theChannelMapping
property.Note
For a MIMO scenario, the center frequency for a N300 radio must be a scalar. You cannot specify the frequencies as a vector.
The channels corresponding to the same RF daughterboard of an N310 must have the same center frequency value.
Tunable: Yes
Data Types: double
LocalOscillatorOffset
— Local oscillator (LO) offset frequency
0
(default) | scalar | row vector
LO offset frequency in Hz, specified as a scalar or row vector. The valid range of this property depends on the RF daughterboard of the USRP device.
The LO offset does not affect the transmitted center frequency. However, the LO offset does affect the intermediate center frequency in the USRP radio, as shown in the diagram.
In this diagram:
f center is the center frequency that you set in the System object.
f LO offset is the LO offset frequency.
Use this property to move the center frequency away from interference or harmonics generated by the USRP radio.
To change the LO offset, specify the value according to these conditions.
For a SISO configuration, specify the LO offset as a scalar.
For MIMO configurations, the LO offset must be zero. This restriction is due to a UHD limitation. In this case, you can specify the LO offset as 0.
Tunable: Yes
Data Types: double
Gain
— Overall gain for USRP radio transmitter data path
8
(default) | scalar | row vector
Overall gain in dB for the USRP radio receiver data path, including analog and digital components, specified as a scalar or row vector. The valid range of this property depends on the RF daughterboard of the USRP device.
Specify the gain according to these conditions.
For a SISO configuration, specify the gain as a scalar.
For MIMO configurations that use the same gain value, specify the gain as a scalar. The gain is set by scalar expansion.
For MIMO configurations that use different gains, specify the values in a row vector (for example,
[32 30]
). The object applies the ith element of the vector to the ith channel that you specify in theChannelMapping
property.
Tunable: Yes
Data Types: double
PPSSource
— PPS signal source
"Internal"
(default) | "External"
| "GPSDO"
Pulse per second (PPS) signal source, specified one of these values.
"Internal"
— Use the internal PPS signal of the USRP radio."External"
— Use the PPS signal from an external signal generator."GPSDO"
— Use the PPS signal from a global positioning system disciplined oscillator (GPSDO).
To synchronize the time for all the channels of the bundled radios, you can:
Provide a common external PPS signal to all of the bundled radios and set this property to
"External"
.Use the PPS signal from each GPSDO that is available on the USRP radio by setting this property to
"GPSDO"
.
To get the lock
status of the GPSDO to the GPS constellation, set this property to
"GPSDO"
and use the gpsLockedStatus
function.
Data Types: char
| string
EnforceGPSTimeSync
— Option to enforce GPS time synchronization
false
or 0
(default) | true
or 1
Option to enforce GPS time synchronization, specified as one of these values.
1
(true
) — Synchronize the USRP radio time to the valid global positioning system (GPS) time if the GPSDO is locked to the GPS constellation at the beginning of the transmit or receive operation.0
(false
) — Set the USRP radio time to the GPSDO time if the GPSDO is not locked to the GPS constellation at the beginning of the transmit or receive operation.
Each time you call the System object, it checks the lock status of the GPSDO. When the GPSDO is locked to the GPS constellation, the System object sets the USRP radio time to the valid GPS time.
Dependencies
To enable this property, set the PPSSource
property to
"GPSDO"
.
Data Types: logical
ClockSource
— Clock source
"Internal"
(default) | "External"
| "GPSDO"
Clock source, specified as one of these values.
"Internal"
— Use the internal clock signal of the USRP radio."External"
— Use the 10 MHz clock signal from an external clock generator."GPSDO"
— Use the 10 MHz clock signal from a GPSDO.
The external clock port has the label REF IN.
To synchronize the frequency for all the channels of the bundled radios, you can:
Provide a common external 10 MHz clock signal to all of the bundled radios and set this property to
"External"
.Provide a 10 MHz clock signal from each GPSDO to the corresponding radio and set this property to
"GPSDO"
.
To synchronize the frequency for all channels, set this property to "GPSDO"
and then verify that the outputs of the referenceLockedStatus
and gpsLockedStatus
functions both return an output of
1
.
Data Types: char
| string
MasterClockRate
— Master clock rate
positive scalar
Master clock rate in Hz, specified as a positive scalar. The master clock rate is the analog to digital (A/D) and digital to analog (D/A) clock rate. The valid range of values for this property depends on the connected radio platform.
Platform Property Value | MasterClockRate Property
Value (in Hz) |
---|---|
|
|
|
|
|
|
Data Types: double
InterpolationFactor
— Interpolation factor for SDRu transmitter
512
(default) | integer in the range [1,1024]
Interpolation factor for the SDRu transmitter, specified as an integer in the range
[1,1024]
with restrictions that depend on the radio you use.
InterpolationFactor Property Value | USRP N3xx Series Radio | USRP X3xx Series Radio |
---|---|---|
| Valid | Valid |
| Valid | Valid |
| Valid | Valid |
Odd integer from 4 to 128 | Not valid | Valid |
Even integer from 4 to 128 | Valid | Valid |
Even integer from 128 to 256 | Valid | Valid |
Integer multiple of 4 from 256 to 512 | Valid | Valid |
Integer multiple of 8 from 512 to 1024 | Valid | Not valid |
The radio uses the interpolation factor when it upconverts the complex baseband signal to an intermediate frequency (IF) signal.
Data Types: double
EnableTimeTrigger
— Option to enable timed transmission and reception
0
or false
(default) | 1
or true
Option to enable timed transmission and reception, specified as a numeric or logical
value of 1
(true
) or 0
(false
). When you set this property to 1
(true
), you can:
Transmit or receive after the time specified in the
TriggerTime
property.Transmit or receive at the specified GPS time in the
TriggerTime
property if you set thePPSSource
property to"GPSDO"
.Simultaneously transmit and receive after the time specified in the
TriggerTime
property.
Data Types: logical
TriggerTime
— Trigger time in seconds
5
(default) | nonnegative scalar
Trigger time in seconds, specified as a nonnegative scalar. Specify the trigger time
after which the radio starts transmitting or receiving data. The
TriggerTime
value must be greater than the current USRP radio time. Use the getRadioTime
function to get the current USRP radio time.
Note
After you call the getRadioTime
function, call the System
object before releasing it to ensure that the object is released properly.
When you set the PPSSource
property to
"GPSDO"
, specify the TriggerTime
property
as the exact GPS time in seconds at which you want the radio to start transmitting or
receiving data.
Note
For USRP N3xx series radios, you can expect a consistent delay between the specified trigger time and the start of transmission or reception.
Dependencies
To enable this property, set the EnableTriggerTime
property
to true
.
Data Types: double
TransportDataType
— Transport data type
"int16"
(default) | "int8"
Transport data type, specified as one of these values:
"int16"
— Use 16-bit transport to achieve higher precision."int8"
— Use 8-bit transport to achieve a transport data rate that is approximately two times faster than 16-bit transport. The quantization step is 256 times larger than 16-bit transport.
The default transport data type assigns the first 16 bits to the in-phase (I) component and the remaining 16 bits to the quadrature (Q) component, resulting in 32 bits for each complex sample of transport data.
Data Types: char
| string
EnableBurstMode
— Option to enable burst mode
0
or
false
(default) | 1
or true
Option to enable burst mode, specified as a numeric or logical
value of 1
(true
) or
0
(false
). To produce a set
of contiguous frames without an overrun or underrun to the radio,
set this property to 1
(true
).
Enable burst mode to simulate models that cannot run in real
time.
When you enable burst mode, specify the number of frames in a burst by using the
NumFramesInBurst
property.
For an example, see Burst Mode Buffering with SDRu Transmitter.
Data Types: logical
NumFramesInBurst
— Number of frames in contiguous
burst
1
(default) | nonnegative integer
Number of frames in a contiguous burst, specified as a nonnegative integer.
Dependencies
To enable this property, set EnableBurstMode
to
1
(true
).
Data Types: double
Usage
Description
Input Arguments
data
— Data to transmit
complex column vector | complex matrix
Data to transmit, specified as a complex column vector or complex matrix. The number of columns in the matrix depends on the number of channels in use, which you specify in the property. For a single-channel radio, this input must be a column vector. For a multichannel radio, this input must be a matrix. Each column in this matrix corresponds to complex data sent on one channel.
The complex data in the transmitted signal must be one of these data types:
16-bit signed integers — Complex values in the range [–32768, 32767]
Single-precision floating point — Complex values in the range [–1, 1]
Double-precision floating point — Complex values in the range [–1, 1]
Data Types: double
| single
| int16
Complex Number Support: Yes
Output Arguments
underrun
— Data discontinuity flag
0
| 1
Data discontinuity flag, returned as one of these values.
0
— The object does not detect underrun.1
— The object detects an underrun. The input data does not represent contiguous data from the host to the USRP radio.
Although the value of this output does not represent the actual number of packets dropped, as this value increases, the farther your execution of the object is from achieving real-time performance. You can use this value as a diagnostic tool to determine real-time execution of the object.
For an example, see Burst Mode Buffering with SDRu Transmitter.
Data Types: uint32
Object Functions
To use an object function, specify the
System object as the first input argument. For
example, to release system resources of a System object named obj
, use
this syntax:
release(obj)
Specific to comm.SDRuTransmitter
info | Current USRP radio settings |
referenceLockedStatus | Lock status of USRP radio to 10 MHz clock signal |
gpsLockedStatus | Lock status of GPSDO to GPS constellation |
getRadioTime | Get current USRP radio time |
Examples
Configure SDRu Transmitter and Transmit Data
Create an SDRu transmitter System object for your USRP radio at the default IP address, 192.168.10.2.
tx = comm.SDRuTransmitter(Platform="X310");
Set the center frequency to 2.5 GHz and the interpolation factor to 256.
tx.CenterFrequency = 2.5e9; tx.InterpolationFactor = 256
tx = comm.SDRuTransmitter with properties: Platform: 'X310' IPAddress: '192.168.10.2' ChannelMapping: 1 CenterFrequency: 2.5000e+09 LocalOscillatorOffset: 0 Gain: 8 PPSSource: 'Internal' EnableTimeTrigger: false ClockSource: 'Internal' MasterClockRate: 200000000 InterpolationFactor: 256 TransportDataType: 'int16' EnableBurstMode: false
Create a DPSK modulator System object to use as the data source.
mod = comm.DPSKModulator(BitInput=true);
Inside a for
-loop, generate 20 frames of random data, modulate the data using the DPSK modulator, and transmit the frames of data using the tx
System object.
for frames = 1:20 data = randi([0 1],30,1); modSignal = mod(data); tx(modSignal); end
Release the hardware resources.
release(tx)
Get USRP Radio Information
Create an SDRu transmitter System object for a USRP N320 radio.
radio = comm.SDRuTransmitter(Platform="N320/N321",IPAddress='192.168.20.2');
Set properties on the System object.
radio.CenterFrequency = 912.3456e6; radio.LocalOscillatorOffset = 1000; radio.Gain = 8.25122; radio.InterpolationFactor = 511
radio = comm.SDRuTransmitter with properties: Platform: 'N320/N321' IPAddress: '192.168.20.2' ChannelMapping: 1 CenterFrequency: 912345600 LocalOscillatorOffset: 1000 Gain: 8.2512 PPSSource: 'Internal' EnableTimeTrigger: false ClockSource: 'Internal' MasterClockRate: 200000000 InterpolationFactor: 511 TransportDataType: 'int16' EnableBurstMode: false
Use the info
function to get information from the radio. The function returns the actual values for the radio. The values can vary from the values you specify when you create the associated System object.
info(radio)
ans = struct with fields:
Mboard: 'n320'
RXSubdev: 'Rhodium'
TXSubdev: 'Rhodium'
MinimumCenterFrequency: 0
MaximumCenterFrequency: 6.1000e+09
MinimumGain: 0
MaximumGain: 60
GainStep: 1
CenterFrequency: 9.1235e+08
LocalOscillatorOffset: -1.0014e+03
Gain: 8.2512
MasterClockRate: 200000000
InterpolationFactor: 510
BasebandSampleRate: 3.9216e+05
Burst Mode Buffering with SDRu Transmitter
This example shows how to detect underruns when using an SDRu transmitter System object and how to overcome them by using burst mode buffering.
Detect Lost Samples
Create an SDRu transmitter System object for your USRP radio. Configure the System object to transmit at a center frequency of 2.5 GHz. To select the maximum sample rate, set the master clock rate to 250 MHz and the interpolation factor to 1.
tx = comm.SDRuTransmitter( ... Platform="N320/N321", ... IPAddress="192.168.20.2", ... CenterFrequency=2.5e9, ... MasterClockRate=250e6, ... InterpolationFactor=1);
Create a comm.DPSKDemodulator
System object to be the data source. Use the System object to modulate randomly generated data for transmission.
modulator = comm.DPSKModulator(BitInput=true); data = randi([0 1],3*1800,1); modSignal = modulator(data);
Transmit 100 frames of data using the SDRu transmitter System object tx
. Additionally output the data continuity flag underrun. Increment a variable n
when an underrun is detected. This indicates that the data transmitted from the USRP radio to the host is not contiguous.
n = 1; for frame = 1:100 underrun = tx(modSignal); modulator(data); if underrun == 1 n = n+1; end end
Report the number of frames where underruns were detected.
fprintf("underruns detected in %d frames without burst mode buffering",n-1)
underruns detected in 5 frames without burst mode buffering
Release the hardware resources.
release(tx) release(modulator)
Use Burst Mode Buffering
To overcome underruns, enable burst mode buffering on the SDRu transmitter System object tx
. Set the number of frames in a burst to 100.
tx.EnableBurstMode = true; tx.NumFramesInBurst = 100;
Transmit 100 frames of data using burst mode buffering.
underrun = tx(modSignal)
underrun = uint32
0
modulator(data);
Release the hardware resources.
release(tx) release(modulator)
Transmit Signal at GPS Trigger Time Using SDRU Transmitter System Object
This example shows how to transmit a signal at GPS trigger time using a USRP™ radio.
Generate a sine wave with a frequency of 30 kHz.
sinewave = dsp.SineWave(1,30e3);
sinewave.SampleRate = 100e6/100;
sinewave.SamplesPerFrame = 1e4;
sinewave.OutputDataType = 'double';
sinewave.ComplexOutput = true;
data = sinewave();
Create an SDRu transmitter System object tx
to transmit the sine wave. Set the serial number to 3136D5F. To transmit the signal at the GPS time, set the PPS signal source to the PPS signal from a GPSDO, clock source to GPSDO, and enable GPS time synchronization.
Fs = 15e6; % Sample Rate interpDecim = 2; % Interpolation or Decimation factor of interest masterClkRate = interpDecim*Fs; % Master clock rate txGain = 45; txChannelMapping = 1; tx = comm.SDRuTransmitter(Platform = "B210", SerialNum='3136D5F', ... PPSSource = "GPSDO", EnforceGPSTimeSync=true, ... ClockSource= "GPSDO", MasterClockRate=masterClkRate,... InterpolationFactor=interpDecim, ChannelMapping=txChannelMapping,... Gain=txGain, CenterFrequency=3.21e9);
To enable the transmitter to start transmitting at the GPS time, set the EnableTimeTrigger
to 1
or true
. Add a time delay to the GPS trigger time.
time_now = datetime('now'); trigger_time = time_now + hours(0) + minutes(0) + seconds(10); % Provide the time delay trigger_time
trigger_time = datetime
20-Jun-2023 17:15:09
trigger_time.TimeZone = 'Asia/Calcutta'; usrp_trigger_time = posixtime(trigger_time); % Provide as input to trigger time tx.EnableTimeTrigger = true; tx.TriggerTime = usrp_trigger_time;
Transmit the signal.
numFrames = 100; for i=1:numFrames txdata = data; underrun = tx(txdata); end
USRP time synchronized to GPS time
Release the transmitter System object.
release(tx);
Generate MEX Function from MATLAB Function Using SDRu Transmitter System Object
This example shows how to generate a MEX file
called sdruTransmitMex
from the function
sdruTransmitData
. When you run this MEX file, the
code shows a performance improvement and no underruns for data frames
that contain 10000 samples.
Create a function that configures a
comm.SDRuTransmitter
System object. Generate a
sine wave of 100 kHz for transmission. The function calculates the
sample rate by using the master clock
rate and interpolation factor. Set the frame duration for the radio
to transmit sine wave based on the samples per frame and sample
rate. Display a message when transmission starts. Inside a
for
-loop, transmit the data using the
tx
System object and return the
underrun
as an output argument.
function[transmitTime,underrunCount] = sdruTransmitData() duration = 10; samplesPerFrame = 1e4; masterClockRate = 20e6; interpolationFactor = 1; sampleRate = masterClockRate/interp; frameDuration = samplesPerFrame/sampleRate; iterations = duration/frameDuration; sinGen = dsp.SineWave(Frequency =100e3, SampleRate = sampleRate, ... SamplesPerFrame = samplesPerFrame, ... ComplexOutput = true); data = sinGen(); tx = comm.SDRuTransmitter(Platform = "B210",SerialNum = "30F59A1", ... CenterFrequency = 2.45e9, ... MasterClockRate = masterClockRate, ... InterpolationFactor = interpolationFactor); tx(data); disp("Started Transmission..."); underrunCount = 0; tic for i = 1:iterations underrun = tx(data); if underrun underrunCount = underrunCount + 1; end end transmitTime = toc; release(tx); end
Generate a MEX file with the name
sdruTransmitMex
from the function
sdruTransmitData
.
codegen sdruTransmitData -o sdruTransmitMex;
Run this MEX file to transmit data using the generated MEX and observe the transmission time and number of underruns.
[transmitTime,underrunCount] = sdruTransmitMex()
More About
Single- and Multiple-Channel Output
USRP X300, X310, N300, and N321 radios support two channels that you can use to transmit and receive data with System objects. You can use both channels or a single channel (either channel 1 or 2).
Send data with the
comm.SDRuTransmitter
System object. Thecomm.SDRuTransmitter
System object transmits a matrix signal, where each column is a channel of data of fixed length.Receive data with the
comm.SDRuReceiver
System object. Thecomm.SDRuReceiver
System object outputs a matrix signal, where each column is a channel of data of fixed length.Note
When two TwinRX daughterboards are connected to a USRP X300 or X310 radio, the radio supports up to four channels.
USRP N310 and radios support four channels that you can use to transmit and receive data with System objects.
The
comm.SDRuTransmitter
System object receives a matrix signal, where each column is a channel of data with a fixed length.The
comm.SDRuReceiver
System object outputs a matrix signal, where each column is a channel of data with a fixed length.
You can set the CenterFrequency
,
LocalOscillatorOffset
, and Gain
properties
independently for each channel. Alternatively, you can apply the same setting to all
channels. All other System object property values apply to all channels.
For more information, see and Multiple Channel Input and Output Operations.
Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
Usage notes and limitations:
getRadioTime
System object method is not supported for code generation.
For more information on codegen
support to the
System objects, see System Objects in MATLAB Code Generation (MATLAB Coder).
For more information on MATLAB Compiler™ support to the System objects, see Acceleration and Deployment
Version History
Introduced in R2011bR2024a: Support for N3xx and X3xx series radio devices moved to Wireless Testbench
Support for NI USRP N3xx and X3xx series radio devices has moved from Communications Toolbox Support Package for USRP Radio to Wireless Testbench Support Package for NI USRP Radios.
R2023b: Enhanced support for time triggering in SDRu System objects
You can now specify trigger time to enable transmission and reception of data at a
specified time for a USRP radio. This property is available in the comm.SDRuTransmitter
and comm.SDRuReceiver
System objects.
R2022b: Reduced setup time for comm.SDRuTransmitter
The time required to initialize the comm.SDRuTransmitter
System Object™ is now about
17 seconds faster for N3xx radio and about 30 seconds faster for
X3xx radios compared to R2022a release.
Simulation performance results for
comm.SDRuTransmitter
System Object:
Platform: X310
Frame time: 0.001 s
Release | Time Required to Set Center Frequency (s) | Time Required to Set Gain (s) | Time Required to Run System Object (s) | Total Time Required to Set Properties and Call System Object (s) |
R2022a | 13.958173 | 13.793633 | 15.975323 | ~43.73 |
R2022b | 0.004808 | 0.001146 | 15.446236 | ~15.45 |
The code execution was timed on a Windows® 10, Intel® Xeon® W-2133 CPU @ 3.60 GHz installed RAM 64.0 GB test system.
R2020a: X3xx series radios no longer support 120 MHz master clock rate
Beginning with Ettus Research UHD version 003.014.000.000, X3xx series radios do not support a master clock rate value of 120 MHz. Consequently, starting in R2020a, which supports UHD version 003.015.000.000, Communications Toolbox Support Package for USRP Radio does not support a master clock rate value of 120 MHz for X3xx series radios.
For the comm.SDRuTransmitter
and
comm.SDRuReceiver
System objects, when you specify an
X3xx series radio for the Platform
property, you
can no longer set the MasterClockRate
property to
120e6
.
Comando de MATLAB
Ha hecho clic en un enlace que corresponde a este comando de MATLAB:
Ejecute el comando introduciéndolo en la ventana de comandos de MATLAB. Los navegadores web no admiten comandos de MATLAB.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list:
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)