Operaciones
Desarrollar funciones de deep learning personalizadas
Para la mayor parte de las tareas, puede usar capas integradas. Si no hay una capa integrada que necesita para la tarea, puede definir su propia capa personalizada. Puede definir capas personalizadas con parámetros que se puedan aprender y de estado. Después de definir una capa personalizada, puede comprobar que es válida y compatible con la GPU, y que devuelve como salida gradientes correctamente definidos. Para obtener más información, consulte Definir capas de deep learning personalizadas. Para obtener una lista de capas compatibles, consulte Lista de capas de deep learning.
Utilice operaciones de deep learning para desarrollar código de MATLAB® para capas personalizadas, bucles de entrenamiento y funciones de modelo.
Funciones
Temas
Diferenciación automática
- Automatic Differentiation Background
Learn how automatic differentiation works. - Use Automatic Differentiation In Deep Learning Toolbox
How to use automatic differentiation in deep learning. - List of Functions with dlarray Support
View the list of functions that supportdlarray
objects. - Define Custom Deep Learning Operations
Learn how to define custom deep learning operation. - Specify Custom Operation Backward Function
This example shows how to define the SReLU operation as a differentiable function and specify a custom backward function. - Train Model Using Custom Backward Function
This example shows how to train a deep learning model that contains an operation with a custom backward function. - Create Bidirectional LSTM (BiLSTM) Function
This example shows how to create a bidirectional long-short term memory (BiLSTM) function for custom deep learning functions. (Desde R2023b)
Funciones de modelos
- Train Network Using Model Function
This example shows how to create and train a deep learning network by using functions rather than a layer graph or adlnetwork
. - Update Batch Normalization Statistics Using Model Function
This example shows how to update the network state in a network defined as a function. - Make Predictions Using Model Function
This example shows how to make predictions using a model function by splitting data into mini-batches. - Initialize Learnable Parameters for Model Function
Learn how to initialize learnable parameters for custom training loops using a model function.
Aceleración de funciones de deep learning
- Deep Learning Function Acceleration for Custom Training Loops
Accelerate model functions and model loss functions for custom training loops by caching and reusing traces. - Accelerate Custom Training Loop Functions
This example shows how to accelerate deep learning custom training loop and prediction functions. - Check Accelerated Deep Learning Function Outputs
This example shows how to check that the outputs of accelerated functions match the outputs of the underlying function. - Evaluate Performance of Accelerated Deep Learning Function
This example shows how to evaluate the performance gains of using an accelerated function.