Entrenamiento personalizado mediante diferenciación automática
Entrene redes de deep learning con bucles de entrenamiento personalizados
Si la función trainingOptions
no proporciona las opciones de entrenamiento que necesita para la tarea o tiene una función de pérdida que la función trainnet
no admite, puede definir un bucle de entrenamiento personalizado. Para los modelos que no se pueden especificar como redes de capas, puede definir el modelo como una función. Para obtener más información, consulte Define Custom Training Loops, Loss Functions, and Networks.
Funciones
Temas
Bucles de entrenamiento personalizados
- Train Deep Learning Model in MATLAB
Learn how to training deep learning models in MATLAB®. - Define Custom Training Loops, Loss Functions, and Networks
Learn how to define and customize deep learning training loops, loss functions, and models. - Entrenar una red con un bucle de entrenamiento personalizado
En este ejemplo se muestra cómo entrenar una red que clasifica dígitos manuscritos con una programación de tasa de aprendizaje personalizada. - Train Sequence Classification Network Using Custom Training Loop
This example shows how to train a network that classifies sequences with a custom learning rate schedule. - Specify Training Options in Custom Training Loop
Learn how to specify common training options in a custom training loop. - Define Model Loss Function for Custom Training Loop
Learn how to define a model loss function for a custom training loop. - Update Batch Normalization Statistics in Custom Training Loop
This example shows how to update the network state in a custom training loop. - Make Predictions Using dlnetwork Object
This example shows how to make predictions using adlnetwork
object by looping over mini-batches. - Monitor Custom Training Loop Progress
Track and plot custom training loop progress. - Compare Custom Solvers Using Custom Training Loop
This example shows how to train a deep learning network with different custom solvers and compare their accuracies. - Redes multi-entrada y multi-salida
Aprenda a definir y entrenar redes de deep learning con varias entradas y salidas. - Entrenar una red con varias salidas
Este ejemplo muestra cómo entrenar una red de deep learning con varias salidas que predicen tanto etiquetas como ángulos de rotación de dígitos manuscritos. - Train Network in Parallel with Custom Training Loop
This example shows how to set up a custom training loop to train a network in parallel. - Run Custom Training Loops on a GPU and in Parallel
Speed up custom training loops by running on a GPU, in parallel using multiple GPUs, or on a cluster. - Detect Issues During Deep Neural Network Training
This example shows how to automatically detect issues while training a deep neural network. - Speed Up Deep Neural Network Training
Learn how to accelerate deep neural network training.
Diferenciación automática
- Automatic Differentiation Background
Learn how automatic differentiation works. - Deep Learning Data Formats
Learn about deep learning data formats. - List of Functions with dlarray Support
View the list of functions that supportdlarray
objects. - Use Automatic Differentiation In Deep Learning Toolbox
How to use automatic differentiation in deep learning.
Redes generativas antagónicas
- Entrenar redes generativas antagónicas (GAN)
En este ejemplo se muestra cómo entrenar una red generativa antagónica para generar imágenes. - Train Conditional Generative Adversarial Network (CGAN)
This example shows how to train a conditional generative adversarial network to generate images. - Train Wasserstein GAN with Gradient Penalty (WGAN-GP)
This example shows how to train a Wasserstein generative adversarial network with a gradient penalty (WGAN-GP) to generate images.
Redes neuronales gráficas
- Multivariate Time Series Anomaly Detection Using Graph Neural Network
This example shows how to detect anomalies in multivariate time series data using a graph neural network (GNN). - Node Classification Using Graph Convolutional Network
This example shows how to classify nodes in a graph using a graph convolutional network (GCN). - Multilabel Graph Classification Using Graph Attention Networks
This example shows how to classify graphs that have multiple independent labels using graph attention networks (GATs).
Aceleración de funciones de deep learning
- Deep Learning Function Acceleration for Custom Training Loops
Accelerate model functions and model loss functions for custom training loops by caching and reusing traces. - Accelerate Custom Training Loop Functions
This example shows how to accelerate deep learning custom training loop and prediction functions. - Check Accelerated Deep Learning Function Outputs
This example shows how to check that the outputs of accelerated functions match the outputs of the underlying function. - Evaluate Performance of Accelerated Deep Learning Function
This example shows how to evaluate the performance gains of using an accelerated function.