IA para señales
Signal Processing Toolbox™ proporciona funcionalidades para realizar el etiquetado de señales, la ingeniería de características y la generación de conjuntos de datos en los flujos de trabajo de machine learning y deep learning. La toolbox también ofrece un objeto codificador automático que se puede entrenar y usar para detectar anomalías en datos de señales.
Apps
Signal Analyzer | Visualizar y comparar múltiples señales y espectros |
Signal Labeler | Etiquete atributos de señal, regiones y puntos de interés y extraiga características |
EDF File Analyzer | Visualizar archivos EDF o EDF+ (desde R2021a) |
Experiment Manager | Design and run experiments to train and compare deep learning networks (desde R2020a) |
Funciones
Temas
- Manage Data Sets for Machine Learning and Deep Learning Workflows
Organize, access, and manage data sets for different AI applications.
- Choose an App to Label Ground Truth Data
Decide which app to use to label ground truth data: Image Labeler, Video Labeler, Ground Truth Labeler, Lidar Labeler, Signal Labeler, or Medical Image Labeler.
- Radar and Communications Waveform Classification Using Deep Learning (Phased Array System Toolbox)
Classify radar and communications waveforms using the Wigner-Ville distribution (WVD) and a deep convolutional neural network (CNN).
- Label Radar Signals with Signal Labeler (Radar Toolbox)
Label the time and frequency features of pulse radar signals with added noise. (desde R2021a)
- Pedestrian and Bicyclist Classification Using Deep Learning (Radar Toolbox)
Classify pedestrians and bicyclists based on their micro-Doppler characteristics using deep learning and time-frequency analysis. (desde R2021a)
- Wavelet Time Scattering Classification of Phonocardiogram Data (Wavelet Toolbox)
Classify human phonocardiogram recordings using wavelet time scattering and a support vector machine classifier.
- Anomaly Detection Using Autoencoder and Wavelets
Use wavelet-extracted features and an autoencoder to detect arc signals in a DC system.
- Train Spoken Digit Recognition Network Using Out-of-Memory Features
Train a spoken digit recognition network on out-of-memory auditory spectrograms using a transformed datastore.
- Denoise Speech Using Deep Learning Networks
Denoise speech signals using fully connected and convolutional neural networks.
- Classify Time Series Using Wavelet Analysis and Deep Learning
Classify ECG signals using the continuous wavelet transform and a deep convolutional neural network.
- Spectral Descriptors (Audio Toolbox)
Overview and applications of spectral descriptors.
Información relacionada
- Deep learning en MATLAB (Deep Learning Toolbox)
- Clasificación de secuencias mediante deep learning (Deep Learning Toolbox)
- Cómo configurar y gestionar experimentos en MATLAB