kfoldPredict
Classify observations in cross-validated kernel ECOC model
Syntax
Description
returns class labels predicted by the cross-validated kernel ECOC model (label = kfoldPredict(CVMdl)ClassificationPartitionedKernelECOC) CVMdl. For every fold,
kfoldPredict predicts class labels for validation-fold observations
using a model trained on training-fold observations. kfoldPredict
applies the same data used to create CVMdl (see fitcecoc).
The software predicts the classification of an observation by assigning the observation to the class yielding the largest negated average binary loss (or, equivalently, the smallest average binary loss).
returns predicted class labels with additional options specified by one or more name-value
pair arguments. For example, specify the posterior probability estimation method, decoding
scheme, or verbosity level.label = kfoldPredict(CVMdl,Name,Value)
[
additionally returns negated values of the average binary loss per class
(label,NegLoss,PBScore]
= kfoldPredict(___)NegLoss) for validation-fold observations and positive-class scores
(PBScore) for validation-fold observations classified by each binary
learner, using any of the input argument combinations in the previous syntaxes.
If the coding matrix varies across folds (that is, the coding scheme is
sparserandom or denserandom), then
PBScore is empty ([]).
[
additionally returns posterior class probability estimates for validation-fold observations
(label,NegLoss,PBScore,Posterior]
= kfoldPredict(___)Posterior).
To obtain posterior class probabilities, the kernel classification binary learners must
be logistic regression models. Otherwise, kfoldPredict throws an
error.
Examples
Classify observations using a cross-validated, multiclass kernel ECOC classifier, and display the confusion matrix for the resulting classification.
Load Fisher's iris data set. X contains flower measurements, and Y contains the names of flower species.
load fisheriris
X = meas;
Y = species;Cross-validate an ECOC model composed of kernel binary learners.
rng(1); % For reproducibility CVMdl = fitcecoc(X,Y,'Learners','kernel','CrossVal','on')
CVMdl =
ClassificationPartitionedKernelECOC
CrossValidatedModel: 'KernelECOC'
ResponseName: 'Y'
NumObservations: 150
KFold: 10
Partition: [1×1 cvpartition]
ClassNames: {'setosa' 'versicolor' 'virginica'}
ScoreTransform: 'none'
Properties, Methods
CVMdl is a ClassificationPartitionedKernelECOC model. By default, the software implements 10-fold cross-validation. To specify a different number of folds, use the 'KFold' name-value pair argument instead of 'Crossval'.
Classify the observations that fitcecoc does not use in training the folds.
label = kfoldPredict(CVMdl);
Construct a confusion matrix to compare the true classes of the observations to their predicted labels.
C = confusionchart(Y,label);

The CVMdl model misclassifies four 'versicolor' irises as 'virginica' irises and misclassifies one 'virginica' iris as a 'versicolor' iris.
Load Fisher's iris data set. X contains flower measurements, and Y contains the names of flower species.
load fisheriris
X = meas;
Y = species;Cross-validate an ECOC model of kernel classification models using 5-fold cross-validation.
rng(1); % For reproducibility CVMdl = fitcecoc(X,Y,'Learners','kernel','KFold',5)
CVMdl =
ClassificationPartitionedKernelECOC
CrossValidatedModel: 'KernelECOC'
ResponseName: 'Y'
NumObservations: 150
KFold: 5
Partition: [1×1 cvpartition]
ClassNames: {'setosa' 'versicolor' 'virginica'}
ScoreTransform: 'none'
Properties, Methods
CVMdl is a ClassificationPartitionedKernelECOC model. It contains the property Trained, which is a 5-by-1 cell array of CompactClassificationECOC models.
By default, the kernel classification models that compose the CompactClassificationECOC models use SVMs. SVM scores are signed distances from the observation to the decision boundary. Therefore, the domain is . Create a custom binary loss function that:
Maps the coding design matrix (M) and positive-class classification scores (s) for each learner to the binary loss for each observation
Uses linear loss
Aggregates the binary learner loss using the median
You can create a separate function for the binary loss function, and then save it on the MATLAB® path. Or, you can specify an anonymous binary loss function. In this case, create a function handle (customBL) to an anonymous binary loss function.
customBL = @(M,s)median(1 - (M.*s),2,'omitnan')/2;Predict cross-validation labels and estimate the median binary loss per class. Print the median negative binary losses per class for a random set of 10 observations.
[label,NegLoss] = kfoldPredict(CVMdl,'BinaryLoss',customBL); idx = randsample(numel(label),10); table(Y(idx),label(idx),NegLoss(idx,1),NegLoss(idx,2),NegLoss(idx,3),... 'VariableNames',[{'True'};{'Predicted'};... unique(CVMdl.ClassNames)])
ans=10×5 table
True Predicted setosa versicolor virginica
______________ ______________ ________ __________ _________
{'setosa' } {'setosa' } 0.20926 -0.84572 -0.86354
{'setosa' } {'setosa' } 0.16144 -0.90572 -0.75572
{'virginica' } {'versicolor'} -0.83532 -0.12157 -0.54311
{'virginica' } {'virginica' } -0.97235 -0.69759 0.16994
{'virginica' } {'virginica' } -0.89441 -0.69937 0.093778
{'virginica' } {'virginica' } -0.86774 -0.47297 -0.15929
{'setosa' } {'setosa' } -0.1026 -0.69671 -0.70069
{'setosa' } {'setosa' } 0.1001 -0.89163 -0.70848
{'virginica' } {'virginica' } -1.0106 -0.52919 0.039829
{'versicolor'} {'versicolor'} -1.0298 0.027354 -0.49757
The cross-validated model correctly predicts the labels for 9 of the 10 random observations.
Estimate posterior class probabilities using a cross-validated, multiclass kernel ECOC classification model. Kernel classification models return posterior probabilities for logistic regression learners only.
Load Fisher's iris data set. X contains flower measurements, and Y contains the names of flower species.
load fisheriris
X = meas;
Y = species;Create a kernel template for the binary kernel classification models. Specify to fit logistic regression learners.
t = templateKernel('Learner','logistic')
t =
Fit template for classification Kernel.
BetaTolerance: []
BlockSize: []
BoxConstraint: []
Epsilon: []
NumExpansionDimensions: []
GradientTolerance: []
HessianHistorySize: []
IterationLimit: []
KernelScale: []
Lambda: []
Learner: 'logistic'
LossFunction: []
Stream: []
VerbosityLevel: []
StandardizeData: []
Version: 1
Method: 'Kernel'
Type: 'classification'
t is a kernel template. Most of its properties are empty. When training an ECOC classifier using the template, the software sets the applicable properties to their default values.
Cross-validate an ECOC model using the kernel template.
rng('default'); % For reproducibility CVMdl = fitcecoc(X,Y,'Learners',t,'CrossVal','on')
CVMdl =
ClassificationPartitionedKernelECOC
CrossValidatedModel: 'KernelECOC'
ResponseName: 'Y'
NumObservations: 150
KFold: 10
Partition: [1×1 cvpartition]
ClassNames: {'setosa' 'versicolor' 'virginica'}
ScoreTransform: 'none'
Properties, Methods
CVMdl is a ClassificationPartitionedECOC model. By default, the software uses 10-fold cross-validation.
Predict the validation-fold class posterior probabilities.
[label,~,~,Posterior] = kfoldPredict(CVMdl);
The software assigns an observation to the class that yields the smallest average binary loss. Because all binary learners are computing posterior probabilities, the binary loss function is quadratic.
Display the posterior probabilities for 10 randomly selected observations.
idx = randsample(size(X,1),10); CVMdl.ClassNames
ans = 3×1 cell
{'setosa' }
{'versicolor'}
{'virginica' }
table(Y(idx),label(idx),Posterior(idx,:),... 'VariableNames',{'TrueLabel','PredLabel','Posterior'})
ans=10×3 table
TrueLabel PredLabel Posterior
______________ ______________ ________________________________
{'setosa' } {'setosa' } 0.68216 0.18546 0.13238
{'virginica' } {'virginica' } 0.1581 0.14405 0.69785
{'virginica' } {'virginica' } 0.071807 0.093291 0.8349
{'setosa' } {'setosa' } 0.74918 0.11434 0.13648
{'versicolor'} {'versicolor'} 0.09375 0.67149 0.23476
{'versicolor'} {'versicolor'} 0.036202 0.85544 0.10836
{'versicolor'} {'versicolor'} 0.2252 0.50473 0.27007
{'virginica' } {'virginica' } 0.061562 0.11086 0.82758
{'setosa' } {'setosa' } 0.42448 0.21181 0.36371
{'virginica' } {'virginica' } 0.082705 0.1428 0.7745
The columns of Posterior correspond to the class order of CVMdl.ClassNames.
Input Arguments
Cross-validated kernel ECOC model, specified as a ClassificationPartitionedKernelECOC model. You can create a
ClassificationPartitionedKernelECOC model by training an ECOC model
using fitcecoc and specifying these name-value
pair arguments:
'Learners'– Set the value to'kernel', a template object returned bytemplateKernel, or a cell array of such template objects.One of the arguments
'CrossVal','CVPartition','Holdout','KFold', or'Leaveout'.
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN, where Name is
the argument name and Value is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name in quotes.
Example: kfoldPredict(CVMdl,'PosteriorMethod','qp') specifies to
estimate multiclass posterior probabilities by solving a least-squares problem using
quadratic programming.
Binary learner loss function, specified as the comma-separated pair consisting of
'BinaryLoss' and a built-in loss function name or function handle.
This table contains names and descriptions of the built-in functions, where yj is the class label for a particular binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss formula.
Value Description Score Domain g(yj,sj) 'binodeviance'Binomial deviance (–∞,∞) log[1 + exp(–2yjsj)]/[2log(2)] 'exponential'Exponential (–∞,∞) exp(–yjsj)/2 'hamming'Hamming [0,1] or (–∞,∞) [1 – sign(yjsj)]/2 'hinge'Hinge (–∞,∞) max(0,1 – yjsj)/2 'linear'Linear (–∞,∞) (1 – yjsj)/2 'logit'Logistic (–∞,∞) log[1 + exp(–yjsj)]/[2log(2)] 'quadratic'Quadratic [0,1] [1 – yj(2sj – 1)]2/2 The software normalizes binary losses so that the loss is 0.5 when yj = 0. Also, the software calculates the mean binary loss for each class [1].
For a custom binary loss function, for example,
customFunction, specify its function handle'BinaryLoss',@customFunction.customFunctionhas this form:bLoss = customFunction(M,s)
Mis the K-by-B coding matrix stored inMdl.CodingMatrix.sis the 1-by-B row vector of classification scores.bLossis the classification loss. This scalar aggregates the binary losses for every learner in a particular class. For example, you can use the mean binary loss to aggregate the loss over the learners for each class.K is the number of classes.
B is the number of binary learners.
By default, if all binary learners are kernel classification models using SVM, then
BinaryLoss is 'hinge'. If all binary
learners are kernel classification models using logistic regression, then
BinaryLoss is 'quadratic'.
Example: 'BinaryLoss','binodeviance'
Data Types: char | string | function_handle
Decoding scheme that aggregates the binary losses, specified as the
comma-separated pair consisting of 'Decoding' and
'lossweighted' or 'lossbased'. For more
information, see Binary Loss.
Example: 'Decoding','lossbased'
Number of random initial values for fitting posterior probabilities by
Kullback-Leibler divergence minimization, specified as the comma-separated pair
consisting of 'NumKLInitializations' and a nonnegative integer
scalar.
If you do not request the fourth output argument (Posterior)
and set 'PosteriorMethod','kl' (the default), then the software
ignores the value of NumKLInitializations.
For more details, see Posterior Estimation Using Kullback-Leibler Divergence.
Example: 'NumKLInitializations',5
Data Types: single | double
Estimation options, specified as a structure array as returned by statset.
To invoke parallel computing you need a Parallel Computing Toolbox™ license.
Example: Options=statset(UseParallel=true)
Data Types: struct
Posterior probability estimation method, specified as the comma-separated pair
consisting of 'PosteriorMethod' and 'kl' or
'qp'.
If
PosteriorMethodis'kl', then the software estimates multiclass posterior probabilities by minimizing the Kullback-Leibler divergence between the predicted and expected posterior probabilities returned by binary learners. For details, see Posterior Estimation Using Kullback-Leibler Divergence.If
PosteriorMethodis'qp', then the software estimates multiclass posterior probabilities by solving a least-squares problem using quadratic programming. You need an Optimization Toolbox™ license to use this option. For details, see Posterior Estimation Using Quadratic Programming.If you do not request the fourth output argument (
Posterior), then the software ignores the value ofPosteriorMethod.
Example: 'PosteriorMethod','qp'
Verbosity level, specified as 0 or 1.
Verbose controls the number of diagnostic messages that the
software displays in the Command Window.
If Verbose is 0, then the software does not display
diagnostic messages. Otherwise, the software displays diagnostic messages.
Example: Verbose=1
Data Types: single | double
Output Arguments
Predicted class labels, returned as a categorical or character array, logical or numeric vector, or cell array of character vectors.
label has the same data type and number of rows as
CVMdl.Y.
The software predicts the classification of an observation by assigning the observation to the class yielding the largest negated average binary loss (or, equivalently, the smallest average binary loss).
Negated average binary losses, returned as a numeric matrix.
NegLoss is an n-by-K
matrix, where n is the number of observations
(size(CVMdl.Y,1)) and K is the number of unique
classes (size(CVMdl.ClassNames,1)).
NegLoss(i,k) is the negated average binary loss for classifying observation
i into the kth class.
If
Decodingis'lossbased', thenNegLoss(i,k)is the negated sum of the binary losses divided by the total number of binary learners.If
Decodingis'lossweighted', thenNegLoss(i,k)is the negated sum of the binary losses divided by the number of binary learners for the kth class.
For more details, see Binary Loss.
Positive-class scores for each binary learner, returned as a numeric matrix.
PBScore is an n-by-B
matrix, where n is the number of observations
(size(CVMdl.Y,1)) and B is the number of binary
learners (size(CVMdl.CodingMatrix,2)).
If the coding matrix varies across folds (that is, the coding scheme is
sparserandom or denserandom), then
PBScore is empty ([]).
Posterior class probabilities, returned as a numeric matrix.
Posterior is an n-by-K
matrix, where n is the number of observations
(size(CVMdl.Y,1)) and K is the number of unique
classes (size(CVMdl.ClassNames,1)).
To return posterior probabilities, each kernel classification binary learner must
have its Learner property set to 'logistic'.
Otherwise, the software throws an error.
More About
The binary loss is a function of the class and classification score that determines how well a binary learner classifies an observation into the class. The decoding scheme of an ECOC model specifies how the software aggregates the binary losses and determines the predicted class for each observation.
Assume the following:
mkj is element (k,j) of the coding design matrix M—that is, the code corresponding to class k of binary learner j. M is a K-by-B matrix, where K is the number of classes, and B is the number of binary learners.
sj is the score of binary learner j for an observation.
g is the binary loss function.
is the predicted class for the observation.
The software supports two decoding schemes:
Loss-based decoding [3] (
Decodingis"lossbased") — The predicted class of an observation corresponds to the class that produces the minimum average of the binary losses over all binary learners.Loss-weighted decoding [4] (
Decodingis"lossweighted") — The predicted class of an observation corresponds to the class that produces the minimum average of the binary losses over the binary learners for the corresponding class.The denominator corresponds to the number of binary learners for class k. [1] suggests that loss-weighted decoding improves classification accuracy by keeping loss values for all classes in the same dynamic range.
The predict, resubPredict, and
kfoldPredict functions return the negated value of the objective
function of argmin as the second output argument
(NegLoss) for each observation and class.
This table summarizes the supported binary loss functions, where yj is a class label for a particular binary learner (in the set {–1,1,0}), sj is the score for observation j, and g(yj,sj) is the binary loss function.
| Value | Description | Score Domain | g(yj,sj) |
|---|---|---|---|
"binodeviance" | Binomial deviance | (–∞,∞) | log[1 + exp(–2yjsj)]/[2log(2)] |
"exponential" | Exponential | (–∞,∞) | exp(–yjsj)/2 |
"hamming" | Hamming | [0,1] or (–∞,∞) | [1 – sign(yjsj)]/2 |
"hinge" | Hinge | (–∞,∞) | max(0,1 – yjsj)/2 |
"linear" | Linear | (–∞,∞) | (1 – yjsj)/2 |
"logit" | Logistic | (–∞,∞) | log[1 + exp(–yjsj)]/[2log(2)] |
"quadratic" | Quadratic | [0,1] | [1 – yj(2sj – 1)]2/2 |
The software normalizes binary losses so that the loss is 0.5 when yj = 0, and aggregates using the average of the binary learners [1].
Do not confuse the binary loss with the overall classification loss (specified by the
LossFun name-value argument of the kfoldLoss and
kfoldPredict object functions), which measures how well an ECOC
classifier performs as a whole.
Algorithms
The software can estimate class posterior probabilities by minimizing the Kullback-Leibler divergence or by using quadratic programming. For the following descriptions of the posterior estimation algorithms, assume that:
mkj is the element (k,j) of the coding design matrix M.
I is the indicator function.
is the class posterior probability estimate for class k of an observation, k = 1,...,K.
rj is the positive-class posterior probability for binary learner j. That is, rj is the probability that binary learner j classifies an observation into the positive class, given the training data.
By default, the software minimizes the Kullback-Leibler divergence to estimate class posterior probabilities. The Kullback-Leibler divergence between the expected and observed positive-class posterior probabilities is
where is the weight for binary learner j.
Sj is the set of observation indices on which binary learner j is trained.
is the weight of observation i.
The software minimizes the divergence iteratively. The first step is to choose initial values for the class posterior probabilities.
If you do not specify
'NumKLIterations', then the software tries both sets of deterministic initial values described next, and selects the set that minimizes Δ.is the solution of the system
where M01 is M with all mkj = –1 replaced with 0, and r is a vector of positive-class posterior probabilities returned by the L binary learners [Dietterich et al.]. The software uses
lsqnonnegto solve the system.
If you specify
'NumKLIterations',c, wherecis a natural number, then the software does the following to choose the set , and selects the set that minimizes Δ.The software tries both sets of deterministic initial values as described previously.
The software randomly generates
cvectors of length K usingrand, and then normalizes each vector to sum to 1.
At iteration t, the software completes these steps:
Compute
Estimate the next class posterior probability using
Normalize so that they sum to 1.
Check for convergence.
For more details, see [Hastie et al.] and [Zadrozny].
Posterior probability estimation using quadratic programming requires an Optimization Toolbox license. To estimate posterior probabilities for an observation using this method, the software completes these steps:
Estimate the positive-class posterior probabilities, rj, for binary learners j = 1,...,L.
Using the relationship between rj and [Wu et al.], minimize
with respect to and the restrictions
The software performs minimization using
quadprog(Optimization Toolbox).
References
[1] Allwein, E., R. Schapire, and Y. Singer. “Reducing multiclass to binary: A unifying approach for margin classifiers.” Journal of Machine Learning Research. Vol. 1, 2000, pp. 113–141.
[2] Dietterich, T., and G. Bakiri. “Solving Multiclass Learning Problems Via Error-Correcting Output Codes.” Journal of Artificial Intelligence Research. Vol. 2, 1995, pp. 263–286.
[3] Escalera, S., O. Pujol, and P. Radeva. “Separability of ternary codes for sparse designs of error-correcting output codes.” Pattern Recog. Lett. Vol. 30, Issue 3, 2009, pp. 285–297.
[4] Escalera, S., O. Pujol, and P. Radeva. “On the decoding process in ternary error-correcting output codes.” IEEE Transactions on Pattern Analysis and Machine Intelligence. Vol. 32, Issue 7, 2010, pp. 120–134.
[5] Hastie, T., and R. Tibshirani. “Classification by Pairwise Coupling.” Annals of Statistics. Vol. 26, Issue 2, 1998, pp. 451–471.
[6] Wu, T. F., C. J. Lin, and R. Weng. “Probability Estimates for Multi-Class Classification by Pairwise Coupling.” Journal of Machine Learning Research. Vol. 5, 2004, pp. 975–1005.
[7] Zadrozny, B. “Reducing Multiclass to Binary by Coupling Probability Estimates.” NIPS 2001: Proceedings of Advances in Neural Information Processing Systems 14, 2001, pp. 1041–1048.
Extended Capabilities
To run in parallel, specify the Options name-value argument in the call to
this function and set the UseParallel field of the
options structure to true using
statset:
Options=statset(UseParallel=true)
For more information about parallel computing, see Run MATLAB Functions with Automatic Parallel Support (Parallel Computing Toolbox).
Version History
Introduced in R2018bStarting in R2023b, the following classification model object functions use observations with missing predictor values as part of resubstitution ("resub") and cross-validation ("kfold") computations for classification edges, losses, margins, and predictions.
In previous releases, the software omitted observations with missing predictor values from the resubstitution and cross-validation computations.
See Also
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Seleccione un país/idioma
Seleccione un país/idioma para obtener contenido traducido, si está disponible, y ver eventos y ofertas de productos y servicios locales. Según su ubicación geográfica, recomendamos que seleccione: .
También puede seleccionar uno de estos países/idiomas:
Cómo obtener el mejor rendimiento
Seleccione China (en idioma chino o inglés) para obtener el mejor rendimiento. Los sitios web de otros países no están optimizados para ser accedidos desde su ubicación geográfica.
América
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)