Main Content

La traducción de esta página está obsoleta. Haga clic aquí para ver la última versión en inglés.

Diseño de control de espacio de estados

Algoritmos LQG/LQR y de ubicación de los polos

Los métodos de diseño de control de espacio de estados, como los algoritmos LQG/LQR y de ubicación de los polos, son útiles para los diseños MIMO.

Funciones

expandir todo

lqrDiseño de un regulador lineal cuadrático (LQR)
lqryForm linear-quadratic (LQ) state-feedback regulator with output weighting
lqiLinear-Quadratic-Integral control
dlqrRegulador lineal cuadrático (LQ) de feedback de estado para un sistema de espacio de estados de tiempo discreto
lqrdDesign discrete linear-quadratic (LQ) regulator for continuous plant
lqgLinear-Quadratic-Gaussian (LQG) design
lqgregForm linear-quadratic-Gaussian (LQG) regulator
lqgtrackForm Linear-Quadratic-Gaussian (LQG) servo controller
augstateAppend state vector to output vector
normNorm of linear model
estimForm state estimator given estimator gain
placeDiseño de la ubicación de los polos
regForm regulator given state-feedback and estimator gains

Temas

Linear-Quadratic-Gaussian (LQG) Design

Linear-quadratic-Gaussian (LQG) control is a state-space technique that allows you to trade off regulation/tracker performance and control effort, and to take into account process disturbances and measurement noise.

LQG Regulation: Rolling Mill Case Study

Use linear-quadratic-Gaussian techniques to regulate the beam thickness in a steel rolling mill.

Design LQG Tracker Using Control System Designer

Design a feedback controller for a disk drive read/write head using LQG synthesis.

Design Yaw Damper for Jet Transport

This case study illustrates the classical design process.

Design an LQG Regulator

Design an LQG regulator for a plant output in a system with noise.

Design an LQG Servo Controller

Design an LQG servo controller using a Kalman state estimator.

Design an LQR Servo Controller in Simulink

Design an LQR controller for a system modeled in Simulink®.

Pole Placement

Closed-loop pole locations have a direct impact on time response characteristics such as rise time, settling time, and transient oscillations. Pole placement uses state-space techniques to assign closed-loop poles.

Ejemplos destacados