Árboles de clasificación
Para aumentar un árbol de clasificación de forma interactiva, utilice la app Classification Learner. Para mayor flexibilidad, aumente un árbol de clasificación mediante fitctree
en la línea de comandos. Tras aumentar un árbol de clasificación, prediga las etiquetas pasando el árbol y los nuevos datos de los predictores a predict
.
Apps
Classification Learner | Entrenar modelos para clasificar datos usando machine learning supervisado |
Bloques
ClassificationTree Predict | Classify observations using decision tree classifier (desde R2021a) |
Funciones
Objetos
ClassificationTree | Binary decision tree for multiclass classification |
CompactClassificationTree | Compact classification tree |
ClassificationPartitionedModel | Cross-validated classification model |
Temas
- Train Decision Trees Using Classification Learner App
Create and compare classification trees, and export trained models to make predictions for new data.
- Supervised Learning Workflow and Algorithms
Understand the steps for supervised learning and the characteristics of nonparametric classification and regression functions.
- Árboles de decisión
Comprenda los árboles de decisión y aprenda a ajustarlos a los datos.
- Growing Decision Trees
To grow decision trees,
fitctree
andfitrtree
apply the standard CART algorithm by default to the training data. - Ver árbol de decisión
Cree y visualice una descripción gráfica o de texto de un árbol de decisión entrenado.
- Visualize Decision Surfaces of Different Classifiers
This example shows how to visualize the decision surface for different classification algorithms.
- Splitting Categorical Predictors in Classification Trees
Learn about the heuristic algorithms for optimally splitting categorical variables with many levels while growing decision trees.
- Improving Classification Trees and Regression Trees
Tune trees by setting name-value pair arguments in
fitctree
andfitrtree
. - Prediction Using Classification and Regression Trees
Predict class labels or responses using trained classification and regression trees.
- Predict Out-of-Sample Responses of Subtrees
Predict responses for new data using a trained regression tree, and then plot the results.
- Predict Class Labels Using ClassificationTree Predict Block
Train a classification decision tree model using the Classification Learner app, and then use the ClassificationTree Predict block for label prediction.
- Human Activity Recognition Simulink Model for Fixed-Point Deployment
Generate code from a classification Simulink® model prepared for fixed-point deployment.
- Identify Punch and Flex Hand Gestures Using Machine Learning Algorithm on Arduino Hardware (Simulink)
This example shows how to use the Simulink® Support Package for Arduino® Hardware to identify punch and flex hand gestures using a machine learning algorithm.