Main Content

La traducción de esta página aún no se ha actualizado a la versión más reciente. Haga clic aquí para ver la última versión en inglés.

Árboles de clasificación

Árboles de decisión binarios para aprendizaje multiclase

Para aumentar un árbol de clasificación de forma interactiva, utilice la app Classification Learner. Para mayor flexibilidad, aumente un árbol de clasificación mediante fitctree en la línea de comandos. Tras aumentar un árbol de clasificación, prediga las etiquetas pasando el árbol y los nuevos datos de los predictores a predict.

Apps

Classification LearnerEntrenar modelos para clasificar datos usando machine learning supervisado

Bloques

ClassificationTree PredictClassify observations using decision tree classifier (desde R2021a)

Funciones

expandir todo

fitctreeFit binary decision tree for multiclass classification
compactReduce size of classification tree model
pruneProduce sequence of classification subtrees by pruning classification tree
cvlossClassification error by cross-validation for classification tree model
limeLocal interpretable model-agnostic explanations (LIME) (desde R2020b)
nodeVariableRangeRetrieve variable range of decision tree node (desde R2020a)
partialDependenceCompute partial dependence (desde R2020b)
permutationImportancePredictor importance by permutation (desde R2024a)
plotPartialDependenceCreate partial dependence plot (PDP) and individual conditional expectation (ICE) plots
predictorImportanceEstimates of predictor importance for classification tree
shapleyShapley values (desde R2021a)
surrogateAssociationMean predictive measure of association for surrogate splits in classification tree
viewView classification tree
crossvalCross-validate machine learning model
kfoldEdgeClassification edge for cross-validated classification model
kfoldLossClassification loss for cross-validated classification model
kfoldMarginClassification margins for cross-validated classification model
kfoldPredictClassify observations in cross-validated classification model
kfoldfunCross-validate function for classification
lossClassification loss for classification tree model
resubLossResubstitution classification loss for classification tree model
compareHoldoutCompare accuracies of two classification models using new data
edgeClassification edge for classification tree model
marginClassification margins for classification tree model
resubEdgeResubstitution classification edge for classification tree model
resubMarginResubstitution classification margins for classification tree model
testckfoldCompare accuracies of two classification models by repeated cross-validation
predictPredict labels using classification tree model
resubPredictClassify observations in classification tree by resubstitution
gatherGather properties of Statistics and Machine Learning Toolbox object from GPU (desde R2020b)

Objetos

ClassificationTreeBinary decision tree for multiclass classification
CompactClassificationTreeCompact classification tree
ClassificationPartitionedModelCross-validated classification model

Temas