Esta página aún no se ha traducido para esta versión. Puede ver la versión más reciente de esta página en inglés.

ClassificationKernel

Modelo de clasificación de kernel Gaussiano con expansión de características aleatorias

Descripción

es un objeto de modelo entrenado para un modelo de clasificación de kernel gaussiano binario que utiliza la expansión de características aleatorias. es más práctico para aplicaciones de macrodatos que tienen grandes conjuntos de entrenamiento, pero también se pueden aplicar a conjuntos de datos más pequeños que caben en la memoria.ClassificationKernelClassificationKernel

A diferencia de otros modelos de clasificación, y para el uso de memoria económica, los objetos de modelo no almacenan los datos de entrenamiento.ClassificationKernel Sin embargo, almacenan información como el número de dimensiones del espacio expandido, el parámetro de escala del kernel, las probabilidades de clase anterior y la fuerza de regularización.

Puede utilizar modelos entrenados para continuar el entrenamiento utilizando los datos de entrenamiento y para predecir etiquetas o puntuaciones de clasificación para nuevos datos.ClassificationKernel Para obtener más información, consulte yresume predict.

Creación

Cree un objeto utilizando la función.ClassificationKernelfitckernel Esta función asigna datos en un espacio de dimensiones reducidas a un espacio de alta dimensionalidad y, a continuación, se ajusta a un modelo lineal en el espacio de alta dimensión minimizando la función objetiva regularizada. El modelo lineal en el espacio de alta dimensión equivale al modelo con un kernel gaussiano en el espacio de dimensiones reducidas. Los modelos de clasificación lineal disponibles incluyen modelos de máquina vectorial de soporte regularizado (SVM) y de regresión logística.

Propiedades

expandir todo

Propiedades de clasificación del kernel

Tipo de modelo de clasificación lineal, especificado como o.'logistic''svm'

En la siguiente tabla, f(x)=T(x)β+b.

  • es una observación (vector de fila) a partir de variables predictoras.xp

  • T(·) es una transformación de una observación (vector de fila) para la expansión de entidades. T(x) mapas enx p a un espacio de alta dimensionalidad (m).

  • es un vector de coeficientes.βm

  • es el sesgo escalar.b

ValorAlgoritmoFunción de pérdidaValorFittedLoss
'logistic'La regresión logísticaDesviación (logística): [y,f(x)]=log{1+exp[yf(x)]}'logit'
'svm'Máquina de vectores de soporteBisagra: [y,f(x)]=max[0,1yf(x)]'hinge'

Número de dimensiones del espacio expandido, especificado como un entero positivo.

Tipos de datos: single | double

Parámetro de escala del kernel, especificado como un escalar positivo.

Tipos de datos: char | single | double

Restricción de cuadro, especificada como un escalar positivo.

Tipos de datos: double | single

Fuerza del término de regularización, especificada como un escalar no negativo.

Tipos de datos: single | double

Función de pérdida utilizada para ajustarse al modelo lineal, especificado como o.'hinge''logit'

ValorAlgoritmoFunción de pérdidaValorLearner
'hinge'Máquina de vectores de soporteBisagra: [y,f(x)]=max[0,1yf(x)]'svm'
'logit'La regresión logísticaDesviación (logística): [y,f(x)]=log{1+exp[yf(x)]}'logistic'

Tipo de penalización de complejidad, que es siempre.'ridge (L2)'

El software compone la función objetivo para la minimización de la suma de la función de pérdida promedio (ver) y el término de regularización, cresta (FittedLossL2pena.

La cresta (L2) es

λ2j=1pβj2

donde se especifica la fuerza del término de regularización (véase).λLambda El software excluye el término de sesgo (β0) de la sanción por regularización.

Otras propiedades de clasificación

Índices de predictores categóricos, cuyo valor siempre está vacío () porque un[] ClassificationKernel modelo no admite predictores categóricos.

Etiquetas de clase únicas utilizadas en el entrenamiento, especificadas como una matriz categórica o de caracteres, Vector lógico o numérico, o matriz de celdas de vectores de caracteres. tiene el mismo tipo de datos que las etiquetas de clase.ClassNamesY (The software treats string arrays as cell arrays of character vectors.) también determina el orden de la clase.ClassNames

Tipos de datos: categorical | char | logical | single | double | cell

Esta propiedad es de solo lectura.

Costos de clasificación errónea, especificados como una matriz numérica cuadrada. tiene filas y columnas, donde está el número de clases.CostoKK

Cost(i,j) es el costo de clasificar un punto en la clase j Si su verdadera clase es i. El orden de las filas y columnas corresponde al orden de las clases en.CostoClassNames

Tipos de datos: double

Los parámetros utilizados para entrenar el ClassificationKernel modelo, especificado como una estructura.

Campos de acceso de uso de notación de puntos.ModelParameters Por ejemplo, acceda a la tolerancia relativa en los coeficientes lineales y el término de sesgo mediante el uso de.Mdl.ModelParameters.BetaTolerance

Tipos de datos: struct

Los nombres predictores en orden de su aparición en los Datos predictores, especificados como una matriz de celdas de vectores de caracteres.X La longitud de es igual al número de columnas en.PredictorNamesX

Tipos de datos: cell

Nombres de predictores ampliados, especificados como una matriz de vectores de caracteres de celda.

Porque un ClassificationKernel modelo no admite predictores categóricos y son iguales.ExpandedPredictorNamesPredictorNames

Tipos de datos: cell

Esta propiedad es de solo lectura.

Probabilidades de clase anteriores, especificadas como un vector numérico. tiene tantos elementos como clases, y el orden de los elementos corresponde a los elementos de.PriorClassNamesClassNames

Tipos de datos: double

Función de transformación de puntuación para aplicar a las puntuaciones previstas, especificadas como un nombre de función o un identificador de función.

Para los modelos de clasificación de kernel y antes de la transformación de puntuación, la puntuación de clasificación pronosticada para la observación (vector de fila) esx f(x)=T(x)β+b.

  • T(·) es una transformación de una observación para la expansión de características.

  • es el vector de columna estimado de los coeficientes.β

  • es el sesgo escalar estimado.b

Para cambiar la función de transformación de puntuación a function, por ejemplo, utilice la notación de puntos.

  • Para una función incorporada, ingrese este código y reemplace function con un valor de la tabla.

    Mdl.ScoreTransform = 'function';

    ValorDescripción
    'doublelogit'1/(1 +e–2x)
    'invlogit'log (/(1 –))xx
    'ismax'Establece la puntuación de la clase con la puntuación más grande y establece las puntuaciones de todas las demás clases para10
    'logit'1/(1 +ex)
    O'none''identity'(sin transformación)x
    'sign'– 1 para < 0 0 para = 0 1 para > 0x
    x
    x
    'symmetric'2 – 1x
    'symmetricismax'Establece la puntuación de la clase con la puntuación más grande y establece las puntuaciones de todas las demás clases para1–1
    'symmetriclogit'2/(1 +ex) – 1

  • Para una función o una función que defina, introduzca su identificador de función.MATLAB®

    Mdl.ScoreTransform = @function;

    function debe aceptar una matriz de las puntuaciones originales para cada clase y, a continuación, devolver una matriz del mismo tamaño que representa las puntuaciones transformadas para cada clase.

Tipos de datos: char | function_handle

Nombre de variable de respuesta, especificado como un vector de caracteres.

Tipos de datos: char

Funciones del objeto

BordeBorde de clasificación para el modelo de clasificación de kernel gaussiano
PérdidaPérdida de clasificación para el modelo de clasificación de kernel gaussiano
MargenLos márgenes de clasificación para el modelo de clasificación de kernel gaussiano
PredecirPredecir etiquetas para el modelo de clasificación de kernel gaussiano
resumeReanudar el entrenamiento del modelo de clasificación de kernel gaussiano

Ejemplos

contraer todo

Entrenar un modelo de clasificación de kernel binario mediante SVM.

Cargue el conjunto de datos.ionosphere Este conjunto de datos tiene 34 predictores y 351 respuestas binarias para las devoluciones de radar, ya sea Bad () o Good ().'b''g'

load ionosphere [n,p] = size(X)
n = 351 
p = 34 
resp = unique(Y)
resp = 2x1 cell array
    {'b'}
    {'g'}

Entrenar un modelo de clasificación de kernel binario que identifique si el retorno del radar es malo () o bueno ().'b''g' Extraiga un resumen de ajuste para determinar qué tan bien se ajusta el algoritmo de optimización al modelo a los datos.

rng('default') % For reproducibility [Mdl,FitInfo] = fitckernel(X,Y)
Mdl =    ClassificationKernel               ResponseName: 'Y'                 ClassNames: {'b'  'g'}                    Learner: 'svm'     NumExpansionDimensions: 2048                KernelScale: 1                     Lambda: 0.0028              BoxConstraint: 1     Properties, Methods  
FitInfo = struct with fields:
                  Solver: 'LBFGS-fast'
            LossFunction: 'hinge'
                  Lambda: 0.0028
           BetaTolerance: 1.0000e-04
       GradientTolerance: 1.0000e-06
          ObjectiveValue: 0.2604
       GradientMagnitude: 0.0028
    RelativeChangeInBeta: 8.2512e-05
                 FitTime: 0.6323
                 History: []

es un modelo.MdlClassificationKernel Para inspeccionar el error de clasificación en la muestra, puede pasar y los datos de entrenamiento o nuevos datos a la función.Mdlloss O puede pasar y nuevos Datos predictores a la función para predecir las etiquetas de clase para nuevas observaciones.Mdlpredict También puede pasar y los datos de entrenamiento a la función para continuar el entrenamiento.Mdlresume

es una matriz de estructura que contiene información de optimización.FitInfo Utilícese para determinar si las mediciones de terminación de optimización son satisfactorias.FitInfo

Para una mayor precisión, puede aumentar el número máximo de iteraciones de optimización () y reducir los valores de tolerancia (y) mediante el uso de los argumentos de par nombre-valor.'IterationLimit''BetaTolerance''GradientTolerance' Hacerlo puede mejorar las medidas como y en.ObjectiveValueRelativeChangeInBetaFitInfo También puede optimizar los parámetros del modelo mediante el argumento de par nombre-valor.'OptimizeHyperparameters'

Cargue el conjunto de datos.ionosphere Este conjunto de datos tiene 34 predictores y 351 respuestas binarias para las devoluciones de radar, ya sea Bad () o Good ().'b''g'

load ionosphere

Particionar el conjunto de datos en conjuntos de entrenamiento y prueba. Especifique una muestra de retención del 20% para el conjunto de pruebas.

rng('default') % For reproducibility Partition = cvpartition(Y,'Holdout',0.20); trainingInds = training(Partition); % Indices for the training set XTrain = X(trainingInds,:); YTrain = Y(trainingInds); testInds = test(Partition); % Indices for the test set XTest = X(testInds,:); YTest = Y(testInds);

Entrenar un modelo de clasificación de kernel binario que identifique si el retorno del radar es malo () o bueno ().'b''g'

Mdl = fitckernel(XTrain,YTrain,'IterationLimit',5,'Verbose',1);
|=================================================================================================================| | Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) | |        |        |              |               |               |   magnitude   | change in Beta |               | |=================================================================================================================| |  LBFGS |      1 |            0 |  1.000000e+00 |  0.000000e+00 |  2.811388e-01 |                |             0 | |  LBFGS |      1 |            1 |  7.585395e-01 |  4.000000e+00 |  3.594306e-01 |   1.000000e+00 |          2048 | |  LBFGS |      1 |            2 |  7.160994e-01 |  1.000000e+00 |  2.028470e-01 |   6.923988e-01 |          2048 | |  LBFGS |      1 |            3 |  6.825272e-01 |  1.000000e+00 |  2.846975e-02 |   2.388909e-01 |          2048 | |  LBFGS |      1 |            4 |  6.699435e-01 |  1.000000e+00 |  1.779359e-02 |   1.325304e-01 |          2048 | |  LBFGS |      1 |            5 |  6.535619e-01 |  1.000000e+00 |  2.669039e-01 |   4.112952e-01 |          2048 | |=================================================================================================================| 

es un modelo.MdlClassificationKernel

Predecir las etiquetas del conjunto de pruebas, construir una matriz de confusión para el conjunto de pruebas y estimar el error de clasificación para el conjunto de pruebas.

label = predict(Mdl,XTest); ConfusionTest = confusionchart(YTest,label);

L = loss(Mdl,XTest,YTest)
L = 0.3594 

clasifica erróneamente todos los malos retornos de radar como buenos retornos.Mdl

Continuar el entrenamiento mediante el uso.resume Esta función continúa el entrenamiento con las mismas opciones utilizadas para el entrenamiento.Mdl

UpdatedMdl = resume(Mdl,XTrain,YTrain);
|=================================================================================================================| | Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) | |        |        |              |               |               |   magnitude   | change in Beta |               | |=================================================================================================================| |  LBFGS |      1 |            0 |  6.535619e-01 |  0.000000e+00 |  2.669039e-01 |                |          2048 | |  LBFGS |      1 |            1 |  6.132547e-01 |  1.000000e+00 |  6.355537e-03 |   1.522092e-01 |          2048 | |  LBFGS |      1 |            2 |  5.938316e-01 |  4.000000e+00 |  3.202847e-02 |   1.498036e-01 |          2048 | |  LBFGS |      1 |            3 |  4.169274e-01 |  1.000000e+00 |  1.530249e-01 |   7.234253e-01 |          2048 | |  LBFGS |      1 |            4 |  3.679212e-01 |  5.000000e-01 |  2.740214e-01 |   2.495886e-01 |          2048 | |  LBFGS |      1 |            5 |  3.332261e-01 |  1.000000e+00 |  1.423488e-02 |   9.558680e-02 |          2048 | |  LBFGS |      1 |            6 |  3.235335e-01 |  1.000000e+00 |  7.117438e-03 |   7.137260e-02 |          2048 | |  LBFGS |      1 |            7 |  3.112331e-01 |  1.000000e+00 |  6.049822e-02 |   1.252157e-01 |          2048 | |  LBFGS |      1 |            8 |  2.972144e-01 |  1.000000e+00 |  7.117438e-03 |   5.796240e-02 |          2048 | |  LBFGS |      1 |            9 |  2.837450e-01 |  1.000000e+00 |  8.185053e-02 |   1.484733e-01 |          2048 | |  LBFGS |      1 |           10 |  2.797642e-01 |  1.000000e+00 |  3.558719e-02 |   5.856842e-02 |          2048 | |  LBFGS |      1 |           11 |  2.771280e-01 |  1.000000e+00 |  2.846975e-02 |   2.349433e-02 |          2048 | |  LBFGS |      1 |           12 |  2.741570e-01 |  1.000000e+00 |  3.914591e-02 |   3.113194e-02 |          2048 | |  LBFGS |      1 |           13 |  2.725701e-01 |  5.000000e-01 |  1.067616e-01 |   8.729821e-02 |          2048 | |  LBFGS |      1 |           14 |  2.667147e-01 |  1.000000e+00 |  3.914591e-02 |   3.491723e-02 |          2048 | |  LBFGS |      1 |           15 |  2.621152e-01 |  1.000000e+00 |  7.117438e-03 |   5.104726e-02 |          2048 | |  LBFGS |      1 |           16 |  2.601652e-01 |  1.000000e+00 |  3.558719e-02 |   3.764904e-02 |          2048 | |  LBFGS |      1 |           17 |  2.589052e-01 |  1.000000e+00 |  3.202847e-02 |   3.655744e-02 |          2048 | |  LBFGS |      1 |           18 |  2.583185e-01 |  1.000000e+00 |  7.117438e-03 |   6.490571e-02 |          2048 | |  LBFGS |      1 |           19 |  2.556482e-01 |  1.000000e+00 |  9.252669e-02 |   4.601390e-02 |          2048 | |  LBFGS |      1 |           20 |  2.542643e-01 |  1.000000e+00 |  7.117438e-02 |   4.141838e-02 |          2048 | |=================================================================================================================| | Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) | |        |        |              |               |               |   magnitude   | change in Beta |               | |=================================================================================================================| |  LBFGS |      1 |           21 |  2.532117e-01 |  1.000000e+00 |  1.067616e-02 |   1.661720e-02 |          2048 | |  LBFGS |      1 |           22 |  2.529890e-01 |  1.000000e+00 |  2.135231e-02 |   1.231678e-02 |          2048 | |  LBFGS |      1 |           23 |  2.523232e-01 |  1.000000e+00 |  3.202847e-02 |   1.958586e-02 |          2048 | |  LBFGS |      1 |           24 |  2.506736e-01 |  1.000000e+00 |  1.779359e-02 |   2.474613e-02 |          2048 | |  LBFGS |      1 |           25 |  2.501995e-01 |  1.000000e+00 |  1.779359e-02 |   2.514352e-02 |          2048 | |  LBFGS |      1 |           26 |  2.488242e-01 |  1.000000e+00 |  3.558719e-03 |   1.531810e-02 |          2048 | |  LBFGS |      1 |           27 |  2.485295e-01 |  5.000000e-01 |  3.202847e-02 |   1.229760e-02 |          2048 | |  LBFGS |      1 |           28 |  2.482244e-01 |  1.000000e+00 |  4.270463e-02 |   8.970983e-03 |          2048 | |  LBFGS |      1 |           29 |  2.479714e-01 |  1.000000e+00 |  3.558719e-03 |   7.393900e-03 |          2048 | |  LBFGS |      1 |           30 |  2.477316e-01 |  1.000000e+00 |  3.202847e-02 |   3.268087e-03 |          2048 | |  LBFGS |      1 |           31 |  2.476178e-01 |  2.500000e-01 |  3.202847e-02 |   5.445890e-03 |          2048 | |  LBFGS |      1 |           32 |  2.474874e-01 |  1.000000e+00 |  1.779359e-02 |   3.535903e-03 |          2048 | |  LBFGS |      1 |           33 |  2.473980e-01 |  1.000000e+00 |  7.117438e-03 |   2.821725e-03 |          2048 | |  LBFGS |      1 |           34 |  2.472935e-01 |  1.000000e+00 |  3.558719e-03 |   2.699880e-03 |          2048 | |  LBFGS |      1 |           35 |  2.471418e-01 |  1.000000e+00 |  3.558719e-03 |   1.242523e-02 |          2048 | |  LBFGS |      1 |           36 |  2.469862e-01 |  1.000000e+00 |  2.846975e-02 |   7.895605e-03 |          2048 | |  LBFGS |      1 |           37 |  2.469598e-01 |  1.000000e+00 |  2.135231e-02 |   6.657676e-03 |          2048 | |  LBFGS |      1 |           38 |  2.466941e-01 |  1.000000e+00 |  3.558719e-02 |   4.654690e-03 |          2048 | |  LBFGS |      1 |           39 |  2.466660e-01 |  5.000000e-01 |  1.423488e-02 |   2.885769e-03 |          2048 | |  LBFGS |      1 |           40 |  2.465605e-01 |  1.000000e+00 |  3.558719e-03 |   4.562565e-03 |          2048 | |=================================================================================================================| | Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) | |        |        |              |               |               |   magnitude   | change in Beta |               | |=================================================================================================================| |  LBFGS |      1 |           41 |  2.465362e-01 |  1.000000e+00 |  1.423488e-02 |   5.652180e-03 |          2048 | |  LBFGS |      1 |           42 |  2.463528e-01 |  1.000000e+00 |  3.558719e-03 |   2.389759e-03 |          2048 | |  LBFGS |      1 |           43 |  2.463207e-01 |  1.000000e+00 |  1.511170e-03 |   3.738286e-03 |          2048 | |  LBFGS |      1 |           44 |  2.462585e-01 |  5.000000e-01 |  7.117438e-02 |   2.321693e-03 |          2048 | |  LBFGS |      1 |           45 |  2.461742e-01 |  1.000000e+00 |  7.117438e-03 |   2.599725e-03 |          2048 | |  LBFGS |      1 |           46 |  2.461434e-01 |  1.000000e+00 |  3.202847e-02 |   3.186923e-03 |          2048 | |  LBFGS |      1 |           47 |  2.461115e-01 |  1.000000e+00 |  7.117438e-03 |   1.530711e-03 |          2048 | |  LBFGS |      1 |           48 |  2.460814e-01 |  1.000000e+00 |  1.067616e-02 |   1.811714e-03 |          2048 | |  LBFGS |      1 |           49 |  2.460533e-01 |  5.000000e-01 |  1.423488e-02 |   1.012252e-03 |          2048 | |  LBFGS |      1 |           50 |  2.460111e-01 |  1.000000e+00 |  1.423488e-02 |   4.166762e-03 |          2048 | |  LBFGS |      1 |           51 |  2.459414e-01 |  1.000000e+00 |  1.067616e-02 |   3.271946e-03 |          2048 | |  LBFGS |      1 |           52 |  2.458809e-01 |  1.000000e+00 |  1.423488e-02 |   1.846440e-03 |          2048 | |  LBFGS |      1 |           53 |  2.458479e-01 |  1.000000e+00 |  1.067616e-02 |   1.180871e-03 |          2048 | |  LBFGS |      1 |           54 |  2.458146e-01 |  1.000000e+00 |  1.455008e-03 |   1.422954e-03 |          2048 | |  LBFGS |      1 |           55 |  2.457878e-01 |  1.000000e+00 |  7.117438e-03 |   1.880892e-03 |          2048 | |  LBFGS |      1 |           56 |  2.457519e-01 |  1.000000e+00 |  2.491103e-02 |   1.074764e-03 |          2048 | |  LBFGS |      1 |           57 |  2.457420e-01 |  1.000000e+00 |  7.473310e-02 |   9.511878e-04 |          2048 | |  LBFGS |      1 |           58 |  2.457212e-01 |  1.000000e+00 |  3.558719e-03 |   3.718564e-04 |          2048 | |  LBFGS |      1 |           59 |  2.457089e-01 |  1.000000e+00 |  4.270463e-02 |   6.237270e-04 |          2048 | |  LBFGS |      1 |           60 |  2.457047e-01 |  5.000000e-01 |  1.423488e-02 |   3.647573e-04 |          2048 | |=================================================================================================================| | Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) | |        |        |              |               |               |   magnitude   | change in Beta |               | |=================================================================================================================| |  LBFGS |      1 |           61 |  2.456991e-01 |  1.000000e+00 |  1.423488e-02 |   5.666884e-04 |          2048 | |  LBFGS |      1 |           62 |  2.456898e-01 |  1.000000e+00 |  1.779359e-02 |   4.697056e-04 |          2048 | |  LBFGS |      1 |           63 |  2.456792e-01 |  1.000000e+00 |  1.779359e-02 |   5.984927e-04 |          2048 | |  LBFGS |      1 |           64 |  2.456603e-01 |  1.000000e+00 |  1.403782e-03 |   5.414985e-04 |          2048 | |  LBFGS |      1 |           65 |  2.456482e-01 |  1.000000e+00 |  3.558719e-03 |   6.506293e-04 |          2048 | |  LBFGS |      1 |           66 |  2.456358e-01 |  1.000000e+00 |  1.476262e-03 |   1.284139e-03 |          2048 | |  LBFGS |      1 |           67 |  2.456124e-01 |  1.000000e+00 |  3.558719e-03 |   8.636596e-04 |          2048 | |  LBFGS |      1 |           68 |  2.455980e-01 |  1.000000e+00 |  1.067616e-02 |   9.861527e-04 |          2048 | |  LBFGS |      1 |           69 |  2.455780e-01 |  1.000000e+00 |  1.067616e-02 |   5.102487e-04 |          2048 | |  LBFGS |      1 |           70 |  2.455633e-01 |  1.000000e+00 |  3.558719e-03 |   1.228077e-03 |          2048 | |  LBFGS |      1 |           71 |  2.455449e-01 |  1.000000e+00 |  1.423488e-02 |   7.864590e-04 |          2048 | |  LBFGS |      1 |           72 |  2.455261e-01 |  1.000000e+00 |  3.558719e-02 |   1.090815e-03 |          2048 | |  LBFGS |      1 |           73 |  2.455142e-01 |  1.000000e+00 |  1.067616e-02 |   1.701506e-03 |          2048 | |  LBFGS |      1 |           74 |  2.455075e-01 |  1.000000e+00 |  1.779359e-02 |   1.504577e-03 |          2048 | |  LBFGS |      1 |           75 |  2.455008e-01 |  1.000000e+00 |  3.914591e-02 |   1.144021e-03 |          2048 | |  LBFGS |      1 |           76 |  2.454943e-01 |  1.000000e+00 |  2.491103e-02 |   3.015254e-04 |          2048 | |  LBFGS |      1 |           77 |  2.454918e-01 |  5.000000e-01 |  3.202847e-02 |   9.837523e-04 |          2048 | |  LBFGS |      1 |           78 |  2.454870e-01 |  1.000000e+00 |  1.779359e-02 |   4.328953e-04 |          2048 | |  LBFGS |      1 |           79 |  2.454865e-01 |  5.000000e-01 |  3.558719e-03 |   7.126815e-04 |          2048 | |  LBFGS |      1 |           80 |  2.454775e-01 |  1.000000e+00 |  5.693950e-02 |   8.992562e-04 |          2048 | |=================================================================================================================| | Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) | |        |        |              |               |               |   magnitude   | change in Beta |               | |=================================================================================================================| |  LBFGS |      1 |           81 |  2.454686e-01 |  1.000000e+00 |  1.183730e-03 |   1.590246e-04 |          2048 | |  LBFGS |      1 |           82 |  2.454612e-01 |  1.000000e+00 |  2.135231e-02 |   1.389570e-04 |          2048 | |  LBFGS |      1 |           83 |  2.454506e-01 |  1.000000e+00 |  3.558719e-03 |   6.162089e-04 |          2048 | |  LBFGS |      1 |           84 |  2.454436e-01 |  1.000000e+00 |  1.423488e-02 |   1.877414e-03 |          2048 | |  LBFGS |      1 |           85 |  2.454378e-01 |  1.000000e+00 |  1.423488e-02 |   3.370852e-04 |          2048 | |  LBFGS |      1 |           86 |  2.454249e-01 |  1.000000e+00 |  1.423488e-02 |   8.133615e-04 |          2048 | |  LBFGS |      1 |           87 |  2.454101e-01 |  1.000000e+00 |  1.067616e-02 |   3.872088e-04 |          2048 | |  LBFGS |      1 |           88 |  2.453963e-01 |  1.000000e+00 |  1.779359e-02 |   5.670260e-04 |          2048 | |  LBFGS |      1 |           89 |  2.453866e-01 |  1.000000e+00 |  1.067616e-02 |   1.444984e-03 |          2048 | |  LBFGS |      1 |           90 |  2.453821e-01 |  1.000000e+00 |  7.117438e-03 |   2.457270e-03 |          2048 | |  LBFGS |      1 |           91 |  2.453790e-01 |  5.000000e-01 |  6.761566e-02 |   8.228766e-04 |          2048 | |  LBFGS |      1 |           92 |  2.453603e-01 |  1.000000e+00 |  2.135231e-02 |   1.084233e-03 |          2048 | |  LBFGS |      1 |           93 |  2.453540e-01 |  1.000000e+00 |  2.135231e-02 |   2.060005e-04 |          2048 | |  LBFGS |      1 |           94 |  2.453482e-01 |  1.000000e+00 |  1.779359e-02 |   1.560883e-04 |          2048 | |  LBFGS |      1 |           95 |  2.453461e-01 |  1.000000e+00 |  1.779359e-02 |   1.614693e-03 |          2048 | |  LBFGS |      1 |           96 |  2.453371e-01 |  1.000000e+00 |  3.558719e-02 |   2.145835e-04 |          2048 | |  LBFGS |      1 |           97 |  2.453305e-01 |  1.000000e+00 |  4.270463e-02 |   7.602088e-04 |          2048 | |  LBFGS |      1 |           98 |  2.453283e-01 |  2.500000e-01 |  2.135231e-02 |   3.422253e-04 |          2048 | |  LBFGS |      1 |           99 |  2.453246e-01 |  1.000000e+00 |  3.558719e-03 |   3.872561e-04 |          2048 | |  LBFGS |      1 |          100 |  2.453214e-01 |  1.000000e+00 |  3.202847e-02 |   1.732237e-04 |          2048 | |=================================================================================================================| | Solver |  Pass  |   Iteration  |   Objective   |     Step      |    Gradient   |    Relative    |  sum(beta~=0) | |        |        |              |               |               |   magnitude   | change in Beta |               | |=================================================================================================================| |  LBFGS |      1 |          101 |  2.453168e-01 |  1.000000e+00 |  1.067616e-02 |   3.065286e-04 |          2048 | |  LBFGS |      1 |          102 |  2.453155e-01 |  5.000000e-01 |  4.626335e-02 |   3.402368e-04 |          2048 | |  LBFGS |      1 |          103 |  2.453136e-01 |  1.000000e+00 |  1.779359e-02 |   2.215029e-04 |          2048 | |  LBFGS |      1 |          104 |  2.453119e-01 |  1.000000e+00 |  3.202847e-02 |   4.142355e-04 |          2048 | |  LBFGS |      1 |          105 |  2.453093e-01 |  1.000000e+00 |  1.423488e-02 |   2.186007e-04 |          2048 | |  LBFGS |      1 |          106 |  2.453090e-01 |  1.000000e+00 |  2.846975e-02 |   1.338602e-03 |          2048 | |  LBFGS |      1 |          107 |  2.453048e-01 |  1.000000e+00 |  1.423488e-02 |   3.208296e-04 |          2048 | |  LBFGS |      1 |          108 |  2.453040e-01 |  1.000000e+00 |  3.558719e-02 |   1.294488e-03 |          2048 | |  LBFGS |      1 |          109 |  2.452977e-01 |  1.000000e+00 |  1.423488e-02 |   8.328380e-04 |          2048 | |  LBFGS |      1 |          110 |  2.452934e-01 |  1.000000e+00 |  2.135231e-02 |   5.149259e-04 |          2048 | |  LBFGS |      1 |          111 |  2.452886e-01 |  1.000000e+00 |  1.779359e-02 |   3.650664e-04 |          2048 | |  LBFGS |      1 |          112 |  2.452854e-01 |  1.000000e+00 |  1.067616e-02 |   2.633981e-04 |          2048 | |  LBFGS |      1 |          113 |  2.452836e-01 |  1.000000e+00 |  1.067616e-02 |   1.804300e-04 |          2048 | |  LBFGS |      1 |          114 |  2.452817e-01 |  1.000000e+00 |  7.117438e-03 |   4.251642e-04 |          2048 | |  LBFGS |      1 |          115 |  2.452741e-01 |  1.000000e+00 |  1.779359e-02 |   9.018440e-04 |          2048 | |  LBFGS |      1 |          116 |  2.452691e-01 |  1.000000e+00 |  2.135231e-02 |   9.941716e-05 |          2048 | |=================================================================================================================| 

Predecir las etiquetas del conjunto de pruebas, construir una matriz de confusión para el conjunto de pruebas y estimar el error de clasificación para el conjunto de pruebas.

UpdatedLabel = predict(UpdatedMdl,XTest); UpdatedConfusionTest = confusionchart(YTest,UpdatedLabel);

UpdatedL = loss(UpdatedMdl,XTest,YTest)
UpdatedL = 0.1284 

El error de clasificación disminuye después de actualizar el modelo de clasificación con más iteraciones.resume

Introducido en R2017b