Skip to content
MathWorks - Mobile View
  • Inicie sesión cuenta de MathWorksInicie sesión cuenta de MathWorks
  • Access your MathWorks Account
    • Mi Cuenta
    • Mi perfil de la comunidad
    • Asociar Licencia
    • Cerrar sesión
  • Productos
  • Soluciones
  • Educación
  • Soporte
  • Comunidad
  • Eventos
  • Obtenga MATLAB
MathWorks
  • Productos
  • Soluciones
  • Educación
  • Soporte
  • Comunidad
  • Eventos
  • Obtenga MATLAB
  • Inicie sesión cuenta de MathWorksInicie sesión cuenta de MathWorks
  • Access your MathWorks Account
    • Mi Cuenta
    • Mi perfil de la comunidad
    • Asociar Licencia
    • Cerrar sesión

Vídeos y webinars

  • MathWorks
  • Vídeos
  • Vídeos-Inicio
  • Buscar
  • Vídeos-Inicio
  • Buscar
  • Comuníquese con ventas
  • Software de prueba
3:26 Video length is 3:26.
  • Description
  • Full Transcript
  • Related Resources

Impact of Cell Temperature on Battery Aging

No thermal management and asymmetrical heat transfer boundary conditions create a thermal gradient in this 8s 2p Li-ion battery module. As a result, battery cells degrade unevenly. Capacity fades more rapidly in cells that are at higher temperatures. This is an undesirable condition since it leads the module into imbalanced SOC conditions.

The battery cell block is modeled using an equivalent circuit with temperature effects, and a provision for capacity fade and internal resistance increase, both functions of cycle count and temperature.

The module is cycled with a square wave of constant power in both charge and discharge. Current changes direction based on minimum and maximum cell battery state of charge (SOC).

Individual cell capacity is continuously calculated and results show how the higher the temperature, the higher the aging rate.

In this example, we model a lithium ion battery pack with an 8S2P topology. Each battery cell is parameterized to represent the electrical behavior of a 1.5 Amp hour, 18,650 commercially available cell, whose data sheet we digitized and turned into equivalent circuit parameters, using a web app that calculates the internal resistance and its temperature dependence, based on constant current discharge curves. Individual battery cells exchange heat with one another by conduction. The top two cells expel heat to the environment by convection. And the bottom two cells are thermally insulated.

In addition to the datasheet information that characterizes the electrical behavior, I added a few assumed degradation-related parameters to simulate the effect of long term cycling and performance, as well as degradation dependence on temperature. It is important to emphasize that these degradation rates are not real since aging information was not available in the datasheet, and that they are extremely exaggerated so that significant degradation can take place in a short amount of time for demonstration purposes.

The Simscape electrical battery block has provisions for the increase in internal resistance and decrease in capacity as a function of cycle count. What is interesting to note in this case, is that effective cycle count will not be uniform throughout the pack because of the non-uniform temperature that will induce different degradation rates. The pack is cycled with a square wave of 300 watts in both charge and discharge. Switching between charge and discharge is based on the SOC of the pack reaching the lower and upper threshold. The total simulation time is 100 hours.

Because of the asymmetrical thermal layout of the system, the temperature of each individual cell evolves differently. Cells at the top are colder than cells at the bottom, which means that their rate of aging is also different from one another, i.e. their capacity and internal resistance are different. This divergent evolution of the cell degradation effectively means that each cell develops a cycle life that is different from those of the cells around it. So here, we can see that the effective cycle counts off the hotter cells is larger than that of the colder cells because their capacity degrades more quickly.

Related Products

  • Simulink
  • Stateflow

Learn More

Free Trial Software for Power Electronics Control Design
Designing a Lithium Ion Battery Management System Ebook
How to Develop Battery Management Systems in Simulink - Video Series
Battery Management Systems (BMS)

3 Ways to Speed Up Model Predictive Controllers

Read white paper

A Practical Guide to Deep Learning: From Data to Deployment

Read ebook

Bridging Wireless Communications Design and Testing with MATLAB

Read white paper

Deep Learning and Traditional Machine Learning: Choosing the Right Approach

Read ebook

Hardware-in-the-Loop Testing for Power Electronics Control Design

Read white paper

Predictive Maintenance with MATLAB

Read ebook

Electric Vehicle Modeling and Simulation - Architecture to Deployment : Webinar Series

Register for Free

How much do you know about power conversion control?

Start quiz

Developing Battery Management Systems with Simulink and Model-Based Design

Read white paper

Feedback

Featured Product

Simulink

  • Request Trial
  • Get Pricing

Up Next:

26:44
Reducing Emissions Using Model-Based Calibration in the...

Related Videos:

23:44
Real-Time Battery Pack Simulation Using Multicore Computers
11:15
Getting Started with Simulink 3D Animation, Part 5:...
2:15
Managing Code in MATLAB: Cell Mode Publishing
2:19
Understanding the Display Method for a Cell

View more related videos

MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

  • Switzerland (English)
  • Switzerland (Deutsch)
  • Switzerland (Français)
  • 中国 (简体中文)
  • 中国 (English)

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • Comuníquese con ventas
  • Software de prueba

MathWorks

Accelerating the pace of engineering and science

MathWorks es el líder en el desarrollo de software de cálculo matemático para ingenieros

Descubra…

Explorar productos

  • MATLAB
  • Simulink
  • Software para estudiantes
  • Soporte para hardware
  • File Exchange

Probar o comprar

  • Descargas
  • Software de prueba
  • Comuníquese con ventas
  • Precios y licencias
  • Cómo comprar

Aprender a utilizar

  • Documentación
  • Tutoriales
  • Ejemplos
  • Vídeos y webinars
  • Formación

Obtener soporte

  • Ayuda para la instalación
  • MATLAB Answers
  • Consultoría
  • Centro de licencias
  • Comuníquese con soporte

Acerca de MathWorks

  • Ofertas de empleo
  • Sala de prensa
  • Misión social
  • Casos prácticos
  • Acerca de MathWorks
  • Select a Web Site United States
  • Centro de confianza
  • Marcas comerciales
  • Política de privacidad
  • Antipiratería
  • Estado de las aplicaciones

© 1994-2022 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

Únase a la conversación