Contenido principal

Esta página se ha traducido mediante traducción automática. Haga clic aquí para ver la última versión en inglés.

plot

Graficar puntos de mapa 3D y trayectoria estimada de la cámara en SLAM visual RGB-D

Desde R2025a

    Descripción

    plot(vslam) traza los puntos del mapa 3-D y la trayectoria estimada de la cámara a partir del objeto SLAM visual RGB-D vslam.

    ejemplo

    plot(vslam,Name=Value) especifica opciones utilizando uno o más argumentos de nombre-valor. Por ejemplo, MarkerSize=10 establece el diámetro del tamaño del marcador en 10 puntos.

    ax = plot(___) devuelve el controlador de ejes para los puntos mapeados en 3D del gráfico, utilizando cualquier combinación de argumentos de entrada de sintaxis anteriores.

    Ejemplos

    contraer todo

    Realice la localización y el mapeo visual simultáneos RGB-D (vSLAM) utilizando los datos del TUM RGB-D Benchmark. Puede descargar los datos a un directorio temporal utilizando un navegador web o ejecutando este código:

    baseDownloadURL = "https://vision.in.tum.de/rgbd/dataset/freiburg3/rgbd_dataset_freiburg3_long_office_household.tgz"; 
    dataFolder = fullfile(tempdir,"tum_rgbd_dataset",filesep); 
    options = weboptions(Timeout=Inf);
    tgzFileName = dataFolder+"fr3_office.tgz";
    folderExists = exist(dataFolder,"dir");
    
    % Create a folder in a temporary directory to save the downloaded file
    if ~folderExists  
        mkdir(dataFolder) 
        disp("Downloading fr3_office.tgz (1.38 GB). This download can take a few minutes.") 
        websave(tgzFileName,baseDownloadURL,options); 
        
        % Extract contents of the downloaded file
        disp("Extracting fr3_office.tgz (1.38 GB) ...") 
        untar(tgzFileName,dataFolder); 
    end

    Crea dos objetos imageDatastore. Uno para almacenar las imágenes en color y el otro para almacenar las imágenes de profundidad.

    colorImageFolder = dataFolder+"rgbd_dataset_freiburg3_long_office_household/rgb/";
    depthImageFolder = dataFolder+"rgbd_dataset_freiburg3_long_office_household/depth/";
    
    imdsColor = imageDatastore(colorImageFolder);
    imdsDepth = imageDatastore(depthImageFolder);

    Seleccione el par sincronizado de imágenes de color y profundidad.

    data = load("rgbDepthPairs.mat");
    imdsColor=subset(imdsColor, data.indexPairs(:, 1));
    imdsDepth=subset(imdsDepth, data.indexPairs(:, 2));

    Especifique los parámetros intrínsecos de su cámara y utilícelos para crear un objeto SLAM visual RGB-D.

    intrinsics = cameraIntrinsics([535.4 539.2],[320.1 247.6],[480 640]);
    depthScaleFactor = 5000;
    vslam = rgbdvslam(intrinsics,depthScaleFactor);

    Procese cada par de imágenes de color y profundidad y visualice las poses de la cámara y los puntos del mapa 3D.

    for i = 1:numel(imdsColor.Files)
        colorImage = readimage(imdsColor,i);
        depthImage = readimage(imdsDepth,i);
        addFrame(vslam,colorImage,depthImage);
    
        if hasNewKeyFrame(vslam)
            % Query 3-D map points and camera poses
            xyzPoints = mapPoints(vslam);
            [camPoses,viewIds] = poses(vslam);
    
            % Display 3-D map points and camera trajectory
            plot(vslam);
        end
    
        % Get current status of system
        status = checkStatus(vslam);
        
        % Stop adding frames when tracking is lost
        if status == uint8(0)
            break
        end
    end 

    Figure contains an axes object. The axes object with xlabel X, ylabel Y contains 12 objects of type line, text, patch, scatter. This object represents Camera trajectory.

    Una vez procesados todos los fotogramas, reinicie el sistema.

    while ~isDone(vslam)
        plot(vslam);
    end

    Figure contains an axes object. The axes object with xlabel X, ylabel Y contains 12 objects of type line, text, patch, scatter. This object represents Camera trajectory.

    reset(vslam);

    Realice SLAM visual-inercial RGB-D utilizando los datos del OpenLORIS-Scene Dataset. Descargue los datos a un directorio temporal usando un navegador web o ejecutando este código:

    dataFolder  = fullfile(tempdir,"OpenLORIS-Scene",filesep); 
    downloadURL = "https://ssd.mathworks.com/supportfiles/shared_nav_vision/data/OpenLORIS-Scene_corridor1-4.zip";
    zipFileName = dataFolder+"corridor1-4.zip";
    
    if ~isfolder(dataFolder)
        mkdir(dataFolder);
        disp("Downloading corridor1-4.zip (1.13 GB). This download can take a few minutes.");
        options = weboptions('Timeout', Inf);
        websave(zipFileName, downloadURL, options); 
        unzip(zipFileName, dataFolder);
    end

    Crea dos objetos imageDatastore. Uno para almacenar las imágenes en color y el otro para almacenar las imágenes de profundidad.

    imageFolder = fullfile(dataFolder,"OpenLORIS-Scene_corridor1-4");
    imdsColor = imageDatastore(fullfile(imageFolder,"color"));
    imdsDepth = imageDatastore(fullfile(imageFolder,"aligned_depth"));

    Cargue los datos de mediciones de IMU y la transformación de cámara a IMU.

    data    = load("corridor4_IMU_data.mat");
    gyro    = data.gyroDataCell;
    accel   = data.accelDataCell;
    cam2IMU = data.cam2IMU;

    Especifique las características intrínsecas de la cámara, los parámetros IMU y utilícelos para crear un objeto SLAM visual-inercial RGB-D.

    % Camera intrinsic and IMU parameters can be found in the downloaded  
    % sensors.yaml file
    intrinsics = cameraIntrinsics([6.1145098876953125e+02, 6.1148571777343750e+02],...
        [4.3320397949218750e+02, 2.4947302246093750e+02], [480, 848]);
    
    imuParams = factorIMUParameters(AccelerometerBiasNoise=2.499999936844688e-05*eye(3),...
           AccelerometerNoise=0.00026780980988405645*eye(3),...
           GyroscopeNoise=1.0296060281689279e-05*eye(3),...
           GyroscopeBiasNoise=2.499999993688107e-07*eye(3),...
           SampleRate=250);
    
    depthScaleFactor = 1000;
    vslam = rgbdvslam(intrinsics, depthScaleFactor, imuParams, SkipMaxFrames=10,...
        CameraToIMUTransform=cam2IMU, TrackFeatureRange = [30, 150], DepthRange= [0.1, 6.5], ...
        NumPosesThreshold=20, MaxNumPoints=1.2e3);

    Procesar datos de imágenes y datos IMU y visualizar las poses de la cámara y los puntos del mapa 3D.

    for i = 1:numel(imdsColor.Files)
        colorImage  = readimage(imdsColor,i);
        depthImage  = readimage(imdsDepth,i);
        addFrame(vslam, colorImage, depthImage, gyro{i}, accel{i});
    
        if hasNewKeyFrame(vslam)
            plot(vslam);
        end
    end

    Una vez procesados todos los fotogramas, reinicie el sistema.

    while ~isDone(vslam)
        if hasNewKeyFrame(vslam)
            ax = plot(vslam);
        end
    end
    view(ax, 0, 90)

    Figure contains an axes object. The axes object with xlabel X, ylabel Y contains 12 objects of type line, text, patch, scatter. This object represents Camera trajectory.

    reset(vslam);

    Argumentos de entrada

    contraer todo

    Objeto SLAM visual RGB-D, especificado como un objeto rgbdvslam.

    Argumentos de par nombre-valor

    contraer todo

    Especifique pares de argumentos opcionales como Name1=Value1,...,NameN=ValueN, donde Name es el nombre del argumento y Value es el valor correspondiente. Los argumentos nombre-valor deben aparecer después de los otros argumentos, pero el orden de los pares no importa.

    Ejemplo: plot(vslam,MarkerSize=10), establece el diámetro del marcador en 10 puntos.

    Diámetro de los marcadores de los puntos del mapa 3D, especificado como un entero positivo en puntos.

    Color de los marcadores de los puntos del mapa 3D, especificado como un triplete RGB o un nombre de color corto o largo. Cada valor dentro de un triplete RGB debe estar en el rango [0 1].

    Fuente de mapa de colores para marcadores, especificada como "X", "Y", "Z" o "MarkerColor".

    Ancho de la base de la cámara, especificado como un escalar positivo en las unidades de datos de los ejes.

    Color de la cámara, especificado como un triplete RGB o un nombre de color corto o largo. Cada valor dentro de un triplete RGB debe estar en el rango [0 1].

    Ejes para visualización, especificados como un objeto gráfico Axes o un objeto UIAxes. Utilice este argumento de nombre-valor para visualizar el gráfico en una interfaz de usuario para la que haya especificado las propiedades Figure y Axes.

    Argumentos de salida

    contraer todo

    Controlador de ejes, devuelto como un objeto gráfico axes.

    Historial de versiones

    Introducido en R2025a

    Consulte también

    Objetos

    Funciones