Main Content

La traducción de esta página aún no se ha actualizado a la versión más reciente. Haga clic aquí para ver la última versión en inglés.

Redes neuronales

Redes neuronales para clasificación binaria y multiclase

Los modelos de redes neuronales se estructuran en una serie de capas que reflejan la manera en que el cerebro procesa la información. Los clasificadores de redes neuronales disponibles en Statistics and Machine Learning Toolbox™ son redes neuronales predictivas interconectadas en las que puede ajustar el tamaño de las capas interconectadas y modificar las funciones de activación de las mismas.

Para entrenar un modelo de clasificación de redes neuronales, utilice la app Classification Learner. Para mayor flexibilidad, entrene un clasificador de redes neuronales mediante fitcnet en la interfaz de línea de comandos. Tras el entrenamiento, puede clasificar los nuevos datos pasando el modelo y los nuevos datos de los predictores a predict.

Si desea crear redes de deep learning más complejas y cuenta con Deep Learning Toolbox™, puede probar la app Deep Network Designer (Deep Learning Toolbox).

Apps

Classification LearnerEntrenar modelos para clasificar datos usando machine learning supervisado

Bloques

ClassificationNeuralNetwork PredictClassify observations using neural network classification model (desde R2021b)

Funciones

expandir todo

fitcnetTrain neural network classification model (desde R2021a)
compactReduce size of machine learning model
limeLocal interpretable model-agnostic explanations (LIME) (desde R2020b)
partialDependenceCompute partial dependence (desde R2020b)
permutationImportancePredictor importance by permutation (desde R2024a)
plotPartialDependenceCreate partial dependence plot (PDP) and individual conditional expectation (ICE) plots
shapleyShapley values (desde R2021a)
crossvalCross-validate machine learning model
kfoldLossClassification loss for cross-validated classification model
kfoldPredictClassify observations in cross-validated classification model
kfoldEdgeClassification edge for cross-validated classification model
kfoldMarginClassification margins for cross-validated classification model
kfoldfunCross-validate function for classification
lossClassification loss for neural network classifier (desde R2021a)
resubLossResubstitution classification loss
edgeClassification edge for neural network classifier (desde R2021a)
marginClassification margins for neural network classifier (desde R2021a)
resubEdgeResubstitution classification edge
resubMarginResubstitution classification margin
predictClassify observations using neural network classifier (desde R2021a)
resubPredictClassify training data using trained classifier

Objetos

ClassificationNeuralNetworkNeural network model for classification (desde R2021a)
CompactClassificationNeuralNetworkCompact neural network model for classification (desde R2021a)
ClassificationPartitionedModelCross-validated classification model

Temas