Regresión no lineal
Modelos de regresión de efectos mixtos y fijos no lineales
En un modelo de regresión no lineal, la variable de respuesta no necesita expresarse como una combinación lineal de las variables predictoras y los coeficientes del modelo. Puede realizar una regresión no lineal con o sin el objeto NonLinearModel
o usando la herramienta interactiva nlintool
.
Funciones
Objetos
NonLinearModel | Nonlinear regression model |
Temas
Modelos no lineales
- Nonlinear Regression
Parametric nonlinear models represent the relationship between a continuous response variable and one or more continuous predictor variables. - Nonlinear Regression Workflow
Import data, fit a nonlinear regression, test its quality, modify it to improve the quality, and make predictions based on the model. - Weighted Nonlinear Regression
This example shows how to fit a nonlinear regression model for data with nonconstant error variance. - Pitfalls in Fitting Nonlinear Models by Transforming to Linearity
This example shows pitfalls that can occur when fitting a nonlinear model by transforming to linearity. - Nonlinear Logistic Regression
This example shows two ways of fitting a nonlinear logistic regression model.
Efectos mixtos
- Mixed-Effects Models
Mixed-effects models account for both fixed effects (which represent population parameters, assumed to be the same each time data is collected) and random effects (which act like additional error terms). - Mixed-Effects Models Using nlmefit and nlmefitsa
Fit a mixed-effects model, plot predictions and residuals, and interpret the results. - Examining Residuals for Model Verification
Examine thestats
structure, which is returned by bothnlmefit
andnlmefitsa
, to determine the quality of your model.