Main Content

La traducción de esta página está obsoleta. Haga clic aquí para ver la última versión en inglés.

Árboles de regresión

Árboles de decisión binarios para regresión

Para aumentar de forma interactiva un árbol de regresión, utilice la app Regression Learner. Para mayor flexibilidad, aumente un árbol de regresión mediante fitrtree en la línea de comandos. Tras aumentar un árbol de regresión, prediga las respuestas pasando el árbol y los nuevos datos de los predictores a predict.

Apps

Regression LearnerTrain regression models to predict data using supervised machine learning

Bloques

RegressionTree PredictPredict responses using regression tree model

Funciones

expandir todo

fitrtreeFit binary decision tree for regression
compactCompact regression tree
pruneProduce sequence of regression subtrees by pruning
limeLocal interpretable model-agnostic explanations (LIME)
partialDependenceCompute partial dependence
plotPartialDependenceCreate partial dependence plot (PDP) and individual conditional expectation (ICE) plots
predictorImportanceEstimates of predictor importance for regression tree
surrogateAssociationMean predictive measure of association for surrogate splits in regression tree
shapleyShapley values
viewView regression tree
crossvalCross-validated decision tree
cvlossRegression error by cross validation
kfoldfunCross-validate function for regression
kfoldPredictPredict responses for observations in cross-validated regression model
kfoldLossLoss for cross-validated partitioned regression model
lossRegression error
resubLossRegression error by resubstitution
predictPredict responses using regression tree
resubPredictPredict resubstitution response of tree

Clases

RegressionTreeRegression tree
CompactRegressionTreeCompact regression tree
RegressionPartitionedModelCross-validated regression model

Temas

Train Regression Trees Using Regression Learner App

Create and compare regression trees, and export trained models to make predictions for new data.

Supervised Learning Workflow and Algorithms

Understand the steps for supervised learning and the characteristics of nonparametric classification and regression functions.

Decision Trees

Understand decision trees and how to fit them to data.

Growing Decision Trees

To grow decision trees, fitctree and fitrtree apply the standard CART algorithm by default to the training data.

View Decision Tree

Create and view a text or graphic description of a trained decision tree.

Improving Classification Trees and Regression Trees

Tune trees by setting name-value pair arguments in fitctree and fitrtree.

Prediction Using Classification and Regression Trees

Predict class labels or responses using trained classification and regression trees.

Predict Out-of-Sample Responses of Subtrees

Predict responses for new data using a trained regression tree, and then plot the results.

Predict Responses Using RegressionTree Predict Block

This example shows how to use the RegressionTree Predict block for response prediction in Simulink®.